Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

ТВЕРСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра «Сопротивления материалов, теории упругости и пластичности»

ТЕХНИЧЕСКАЯ МЕХАНИКА, СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

Методические указания

для самостоятельного выполнения расчетно-графической работы и лабораторного практикума

УДК 539.3/6 (075.8) ББК 36.91 я7

Техническая механика, сопротивление материалов: методические указания для самостоятельного выполнения расчетно-графической работы и лабораторного практикума / сост. А. А. Алексеев, Е. Г. Алексеева, В. Н. Ведерников, С. А. Соколов. Тверь: Изд. ТвГТУ, 2015. – 38 с.

Методические указания разработаны для организации самостоятельной работы студентов по правильному усвоению практических основ дисциплин «Техническая механика», «Сопротивление материалов» и приобретении навыков решения задач на прочность, жесткость и устойчивость элементов конструкций и деталей машин. Предназначены для студентов, изучающих данные дисциплины в рамках односеместровых курсов.

Методические указания рассмотрены и рекомендованы к опубликованию на заседании кафедры СМТУиП (протокол № 5 от 6 мая 2015 г.).

Составители: А. А. Алексеев, к.т.н., доц., ТвГТУ,

Е. Г. Алексеева, к.т.н., доц., ТвГТУ,

В. Н. Ведерников, к.т.н., доц., ТвГТУ,

С. А. Соколов, к.т.н., доц. каф. СМТУиП, ТвГТУ.

[©] Алексеев А. А., Алексеева Е. Г., Ведерников В. Н., Соколов С. А., 2015

[©] Тверской государственный технический университет, 2015

ОБЩИЕ УКАЗАНИЯ

При изучении дисциплин «Техническая механика» или «Сопротивление материалов» в соответствии с учебным планом в зависимости от направления подготовки бакалавров или специалистов, студенты самостоятельно выполняют расчетно-графическую работу (РГР), состоящую из трех блоков, и лабораторный практикум (табл. 1).

Таблица 1 Содержание и сроки защиты РГР и лабораторного практикума

No	Содержание	Задачи,	Сроки (недели)		
715	Содержание	лаб. раб.	выдачи	сдачи	
1.	Построение эпюр внутренних сило-				
	вых факторов при растяжении-сжатии	1.1-1.4	1	8	
	и кручении брусьев с расчетами на	1.1 1.1	-	Ü	
	прочность и жесткость				
2.	Построение эпюр внутренних силовых				
	факторов при плоском изгибе балок с	2.1 - 2.4	8	14	
	расчетами на прочность и жесткость				
3.	Устойчивость и динамика упругих	3.1-3.2	14	16	
	систем	5.1 5.2	17	10	
1	4. Побороторумуй произумуль		В течение		
4.	Лабораторный практикум	л.р. 1–7	семес	стра	

Перед выполнением учебных задач РГР рекомендуется усвоить теоретические основы соответствующего раздела дисциплины по конспекту лекций и рекомендованной учебной литературе, а также разобраться с решением ряда типовых задач на практических занятиях. В противном случае при выполнении задач могут возникнуть затруднения.

Номер варианта выдается студенту преподавателем на первом занятии. Общие исходные данные ко всем задачам принимаются по табл. 2, 3. Работы, выполненные не под своим вариантом и с неверными исходными данными, не проверяются и возвращаются на переработку.

Задачи РГР выполняются и сдаются на проверку преподавателю в срок, определенный учебным планом дисциплины. Получив после рецензирования свою работу, студент должен исправить в ней все отмеченные ошибки и выполнить все сделанные ему указания, если таковые имеются. При этом вносить исправления на незначительные замечания следует на той же странице (или с обратной стороны), в случае серьезных ошибок исправления следует производить на отдельных листах.

После исправления студентом всех ошибок, отмеченных преподавателем и повторной проверки задач РГР, они подлежат защите. На защите

студент должен объяснить преподавателю ход решения задач, показать знание теоретического материала и умение применить его к решению практических задач.

Для проверки уровня знаний студентов используется комплексное оценивание в виде зачета или экзамена. Допуск к зачету (экзамену) включает защищенную РГР и лабораторные работы. Зачет (экзамен) проводится в письменной форме с последующим собеседованием по билетам, содержащим два вопроса — теоретический и практический (задача).

Своевременная сдача на проверку задач РГР согласно утвержденных сроков (табл. 1) и их защита, а также прилежание (посещаемость лекций и лабораторно-практических занятий, наличие и аккуратное ведение конспекта) принимаются во внимание при итоговой аттестации студента. Следует заметить, что в результате не самостоятельного выполнения задач РГР студент не приобретает необходимых теоретических знаний и практических навыков и оказывается не подготовленным к сдаче зачета (экзамена).

Таблица 2

Группа	q, к H /м	<i>Р</i> , кН	М, кНм	<i>l</i> , м	l_1 , M	<i>l</i> ₂ , м	<i>l</i> ₃ , м
	40	50	100	3	0,5	1,5	1,0
	30	60	90	3,5	1,0	0,5	1,5
	20	70	80	4	1,5	1,0	0,5
	10	80	70	4,5	0,8	1,2	1,0
	70	90	60	2	1,0	0,8	1,2
	60	100	50	2,5	1,2	1,0	0,8
	40	110	40	2	1,0	1,8	1,2
	30	120	30	4	1,2	1,0	1,8
	20	130	20	3	1,8	1,2	1,0

Таблица 3

Группа	Равнобокий уголок	Вертик. лист (мм)	Горизонт. лист (мм)	Двутавр	Швеллер
	90×90×6	400×20	300×10	12	12
	100×100×4	400×18	300×12	14	14
	110×110×7	400×16	300×14	16	16
	$125 \times 125 \times 14$	400×14	300×16	18	18
	140×140×9	500×12	400×14	20	20
	160×160×20	500×14	400×16	22	22
	180×180×11	500×16	400×18	24	24
	200×200×12	600×18	500×14	27	27
	220×220×14	600×14	500×16	30	30

ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ ЗАДАЧ

Задачи РГР и лабораторные работы оформляются на листах белой бумаги формата A4, записи делаются только с одной стороны листа. На каждой странице оставляются поля: слева — 25 мм, верхнее, нижнее и правое — по 15 мм. Содержание и номера страниц обязательны. Выполненные работы с титульным листом помещаются в скоросшиватель с прозрачной первой страницей. Образец титульного листа приведен на стр. 6.

Перед решением каждой задачи на **отдельном листе** (первый лист) необходимо записать ее **условие с числовыми исходными данными и изобразить в масштабе заданную расчетную схему**. Все графические схемы и рисунки выполняются аккуратно по линейке, все записи — четким разборчивым почерком. Разрешается задачи РГР оформлять в компьютерном варианте с привлечением текстовых и графических редакторов, например Microsoft Word и Autodesk AutoCAD. В этом случае распечатки должны иметь достаточную для прочтения яркость. Также следует обратить внимание на кодировку текста и корректное отображение всех символов в распечатках.

В графической части задачи (второй лист, при необходимости можно использовать дополнительные листы) вычерчивается в масштабе схема конструкции с указанием всех величин используемых в расчетах, как в буквенных обозначениях, так и в числах. Эпюры внутренних усилий (напряжений, перемещений) должны вычерчиваться строго под расчетной схемой балки (бруса). На эпюрах обязательно проставляются значения вычисленных характерных ординат. Эпюры заштриховываются тонкими линиями (расстояние между линиями 2–3 мм) перпендикулярно оси элемента конструкции. На заштрихованном поле эпюры проставляется ее знак, если это необходимо.

Решение задачи (третий и последующие листы) должно сопровождаться подробным последовательным пояснением, но без лишних теоретических выводов, имеющихся в учебниках. В решении должна четко прослеживаться логическая связь выполняемых действий, а также должны быть отмечены основания для выполнения этих действий.

Формулы необходимо записывать сначала в общем виде, а затем уже должна быть произведена подстановка числовых исходных данных и выполнены необходимые вычисления. Все арифметические вычисления следует выполнять с точностью до трех значащих цифр — точностью, достаточной для инженерных расчетов. При подстановке исходных данных нужно внимательно следить за соблюдением одинаковой размерности. При оформлении задачи следует обратить внимание на то, что бы везде стояли единицы измерения физических величин.

<u>Небрежно выполненные задачи и задачи, оформленные без соблюдения</u> указанных требований, возвращаются на переработку без проверки.

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

ТВЕРСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра сопротивления материалов, теории упругости и пластичности

Расчетно-графическая работа					
о дисциплине					
Выполнил студент					
Вариант					
Группа					

№	Содержание	Номера задач	Дата сдачи на проверку	Дата защиты	Оценка	Подпись препода- вателя
1.	Построение эпюр внутренних силовых факто-	1.1				
	ров при растяжении-	1.2				
	сжатии и кручении брусьев с расчетами на	1.3				
	прочность и жесткость	1.4				
2.	Построение эпюр внутренних силовых факто-	2.1				
	ров при плоском изгибе балок с расчетами на	2.2				
	прочность и жесткость	2.3				
		2.4				
3.	Устойчивость и динамика упругих	3.1				
	систем	3.2				
4.	Лабораторный практикум	л.р. № 1-7				

Принял			

БЛОК № 1. ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ ПРИ РАСТЯЖЕНИИ-СЖАТИИ И КРУЧЕНИИ БРУСЬЕВ С РАСЧЕТАМИ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ

Задача 1.1. Подбор размеров поперечного сечения, определение напряжений и перемещений в брусе при его растяжении-сжатии

Для бруса (рис. 1) постоянного поперечного сечения, находящегося под действием продольных сил, используя метод сечений, построить эпюру нормальных сил N. Из условия прочности определить диаметр круглого поперечного сечения. Построить эпюры нормальных напряжений σ_z и продольных перемещений W.

Принять: материал — углеродистая сталь, $[\sigma] = 160 \text{ M}\Pi \text{a}$, $E = 2 \cdot 10^5 \text{ M}\Pi \text{a}$.

Задача 1.2. Расчет статически неопределимого бруса, работающего на растяжение-сжатие

Для бруса постоянного поперечного сечения (рис. 2), жестко защемленного с обоих торцов, требуется раскрыть статическую неопределимость и построить эпюру нормальных сил N. Подобрать квадратное поперечное сечение и построить эпюру нормальных напряжений σ_z . Определить, как изменятся нормальные силы N и напряжения σ_z при дополнительном равномерном нагреве стержня на $\Delta T = 30^{\circ}\,\mathrm{C}$.

Принять: материал — углеродистая сталь, $[\sigma] = 210\,$ МПа, $E = 2 \cdot 10^5\,$ МПа, коэффициент линейного расширения $\alpha = 1, 21 \cdot 10^{-5}\,$ 1/град.

Задача 1.3. Подбор размеров поперечного сечения, определение напряжений и перемещений бруса (вала), работающего на кручение

Для вала, нагруженного внешними крутящими моментами (рис. 3), требуется, используя метод сечений, построить эпюру крутящих моментов M_z , из условия прочности подобрать диаметр круглого поперечного сечения. В опасном сечении построить эпюру касательных напряжений τ . Построить эпюру углов закручивания ϕ .

Принять: материал — углеродистая сталь, $[\tau] = 80 \text{ M}\Pi \text{a}$, $G = 0.8 \cdot 10^5 \text{ M}\Pi \text{a}$.

Задача 1.4. Расчет статически неопределимого вала при кручении

Для вала (рис. 4) постоянного поперечного сечения, жестко защемленного с обоих торцов, требуется раскрыть статическую неопределимость задачи и построить эпюру крутящих моментов M_z . Из условия прочности подобрать размеры кольцевого поперечного сечения с соотношением внешнего и внутреннего диаметров D/d=2.

Принять: материал — углеродистая сталь, $[\tau] = 80$ МПа.

БЛОК № 2. ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ ПРИ ПЛОСКОМ ИЗГИБЕ БАЛОК С РАСЧЕТАМИ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ

Задача 2.1. Определение грузоподъемности балки при плоском поперечном изгибе

Для балки (рис. 5), имеющей поперечное сечение (рис. 6, табл. 3) используя метод сечений, построить эпюры перерезывающих сил Q_y и изгибающих моментов M_x , если P = 2ql, $M = 0.5ql^2$. Из условия прочности по нормальным напряжениям определить значение допускаемой нагрузки q. В опасном сечении построить эпюру нормальных напряжений.

Принять: материал — углеродистая сталь, $[\sigma]$ = 180 МПа, $E = 2 \cdot 10^5$ МПа.

Задача 2.2. Подбор поперечных сечений балки, работающей в условиях плоского поперечного изгиба

Для балки (рис. 7), используя метод сечений, построить эпюры внутренних усилий Q_y и M_x , и проверить правильность их построения с помощью дифференциальных зависимостей Журавского. Из условия прочности по нормальным напряжениям σ_z подобрать прокатное двутавровое поперечное сечение. В опасных сечениях построить эпюры нормальных σ_z и касательных τ_{yz} напряжений. Проверить прочность балки по касательным напряжениям, если условие прочности не выполняется, подобрать новое поперечное сечение.

Принять: материал — углеродистая сталь, $[\sigma] = 160 \text{ M}\Pi \text{a}$, $[\tau] = 80 \text{ M}\Pi \text{a}$.

Задача 2.3. Определение перемещений в балке методом начальных параметров и подбор поперечного сечения из условия жесткости

Для балки постоянной жесткости $EJ_x = \mathrm{const}$ (рис. 5) требуется:

- 1) определить прогиб в точке B и угол поворота сечения в точке C;
- 2) из условия жесткости $|v_B| \le [v]$ подобрать двутавровое поперечное сечение;
- 3) используя метод сечений, построить эпюры внутренних усилий Q_y , M_x , и проверить балку на прочность по нормальным и касательным напряжениям; если условие прочности не выполняется, подобрать новое поперечное сечение;
- 4) изобразить примерную изогнутую ось балки, используя полученные значения перемещений, ее условия опирания и эпюру изгибающего момента.

Принять: материал — углеродистая сталь, $[\sigma]=160$ МПа, $[\tau]=80$ МПа, $E=2\cdot10^5$ МПа; [v]=L/400, где L — длина пролета балки.

Задача 2.4. Расчет статически неопределимой балки методом сравнения перемещений

Для балки постоянной жесткости $EJ_x=$ const (рис. 8) требуется раскрыть статическую неопределимость методом сравнения перемещений (для определения перемещений использовать метод начальных параметров). Построить эпюры внутренних усилий Q_y и M_x , из условия прочности по нормальным напряжениям подобрать прямоугольное поперечное сечение с соотношением сторон h/b=3.

Принять: материал — углеродистая сталь, $[\sigma] = 200 \text{ M}\Pi \text{a}$, $E = 2 \cdot 10^5 \text{ M}\Pi \text{a}$; [v] = L/250, где L — длина максимального пролета балки.

БЛОК № 3. УСТОЙЧИВОСТЬ И ДИНАМИКА УПРУГИХ СИСТЕМ

Задача 3.1. Определение грузоподъемности центрально-сжатого стержня из условия устойчивости

Для центрально-сжатого стержня длиной L=2l, поперечное сечение и схема закрепления которого приведены на рис. 9, 10 соответственно, определить допускаемое и критическое значение силы P и коэффициент запаса на устойчивость. Принять: материал стержня — сталь Ct3, $[\sigma]=160$ МПа, $E=2\cdot10^5$ МПа, $\sigma_{\text{III}}=200$ МПа, $\sigma_{\text{T}}=240$ МПа.

При определении допускаемого значения силы P использовать таблицу значений коэффициента ϕ снижения допускаемого напряжения на сжатие (см. табл. 8 приложения).

Указание: для стержней средней гибкости ($\lambda_* \le \lambda \le \lambda_{np}$) критические напряжения вычислять по эмпирической формуле Ясинского $\sigma_{\kappa p} = a - b\lambda$, где a = 304 МПа, b = 1,12 МПа , $\lambda_{np} = 100$, $\lambda_* = 60$.

Задача 3.2. Расчет балки на ударную нагрузку

На балку постоянной жесткости EJ_x = const, схема которой и исходные данные приведены на рис. 11, с высоты $h_{\rm rp}$ падает груз весом P=mg. Требуется определить наибольшее динамическое нормальное напряжение. Установить, как изменится динамическое напряжение при замене правой опоры упругой пружиной с податливостью δ . Принять: материал — углеродистая сталь, $[\sigma]=160\,$ МПа, $E=2\cdot10^5\,$ МПа, ускорение свободного падения $g\approx10\,$ м/сек 2 . Собственным весом балки при решении задачи пренебречь.

ЛАБОРАТОРНЫЙ ПРАКТИКУМ

В течение учебного семестра в лаборатории механических испытаний кафедры СМТУиП (Ц-13) студенты под руководством преподавателей выполняют следующие лабораторные работы:

<u>Лабораторная работа № 1.</u> Определение механических свойств и характеристик материалов при растяжении.

Лабораторная работа № 2. Определение упругих постоянных материалов.

<u>Лабораторная работа № 3.</u> Испытание на кручение бруса круглого поперечного сечения.

<u>Лабораторная работа № 4.</u> Определение напряжений и деформаций в балке при поперечном изгибе.

<u>Лабораторная работа № 5.</u> Определение перемещений в балках при поперечном изгибе.

<u>Лабораторная работа № 6.</u> Статически неопределимая балка.

Лабораторная работа № 7. Устойчивость сжатого стержня.

ЛИТЕРАТУРА

- 1. **Александров, А.В.** Сопротивление материалов [Текст]: учебник для вузов / А.В. Александров, В.Д. Потапов, Б.П. Державин; под ред. А.В. Александрова. М.: Высшая школа, 2009. 560 с.
- 2. **Зубчанинов, В.Г.** Сопротивление материалов. Книга 1 [Текст]: учебное пособие / В.Г. Зубчанинов. Тверь: ТГТУ, 2003. 224 с.
- 3. **Зубчанинов, В.Г.** Сопротивление материалов. Книга 2 [Текст]: учебное пособие / В.Г. Зубчанинов. Тверь: ТГТУ, 2005. 350 с.
- 4. **Зубчанинов, В.Г.** Руководство к практическим занятиям по сопротивлению материалов [Текст]: учебное пособие, Ч. 1 / В.Г. Зубчанинов, В.Н. Ведерников, Е.Г. Алексеева. Тверь: ТвГТУ, 2007. 152 с.
- 5. **Зубчанинов, В.Г.** Руководство к практическим занятиям по сопротивлению материалов [Текст]: учебное пособие, Ч. 2 / В.Г. Зубчанинов, В.Н. Ведерников, Е.Г. Алексеева. Тверь: ТвГТУ, 2009. 208 с.
- 6. **Зубчанинов, В.Г.** Лабораторный практикум по сопротивлению материалов [Текст]: учебное пособие / В.Г. Зубчанинов, В.В. Гараников, В.Н. Ведерников. Тверь: ТвГТУ, 2007. 132 с.
- 7. **Костенко, Н.А.** Сопротивление материалов [Текст]: учебное пособие / Н.А. Костенко, С.В. Балясников Ю.Э. Волошановская и др; под редакцией Н.А. Костенко. М.: Высшая школа, 2004. 430 с.
- 8. **Писаренко, Г.С.** Справочник по сопротивлению материалов [Текст] / Г.С. Писаренко, А.П. Яковлев, В.В. Матвеев. Киев: Дельта, 2008. 813 с.
- 9. **Феодосьев, В.И.** Сопротивление материалов [Текст]: учебник для студентов втузов / В.И. Феодосьев. М.: Издательство МГТУ им. Н.Э. Баумана, 2001.-591 с.

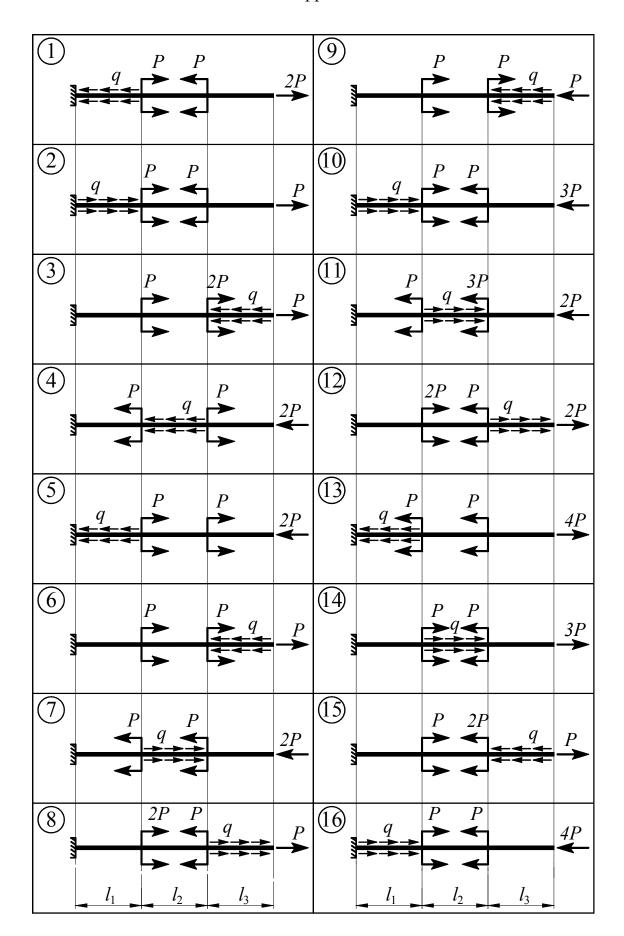


Рис. 1. Схемы к задаче 1.1

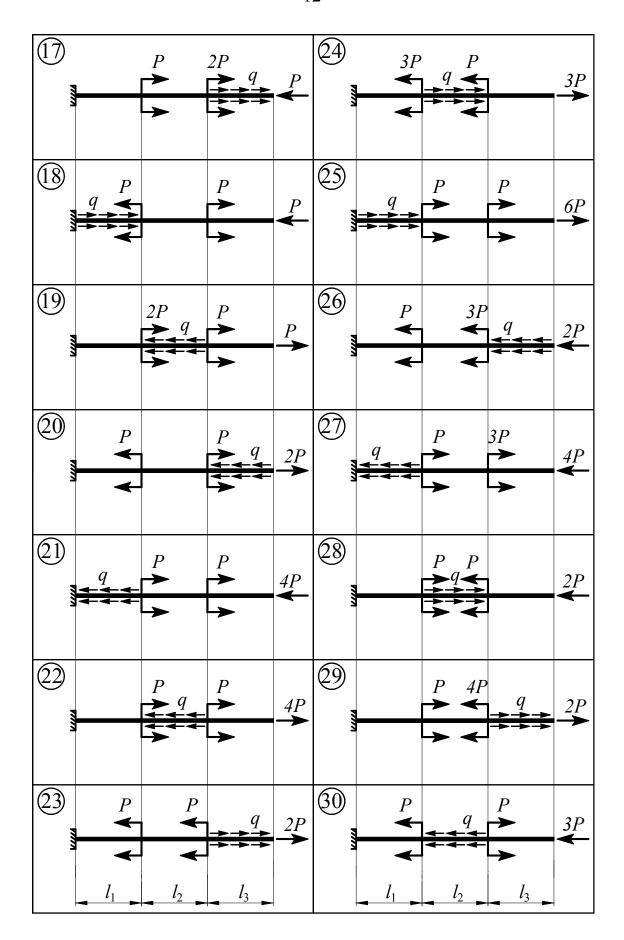


Рис. 1. Схемы к задаче 1.1 (окончание)

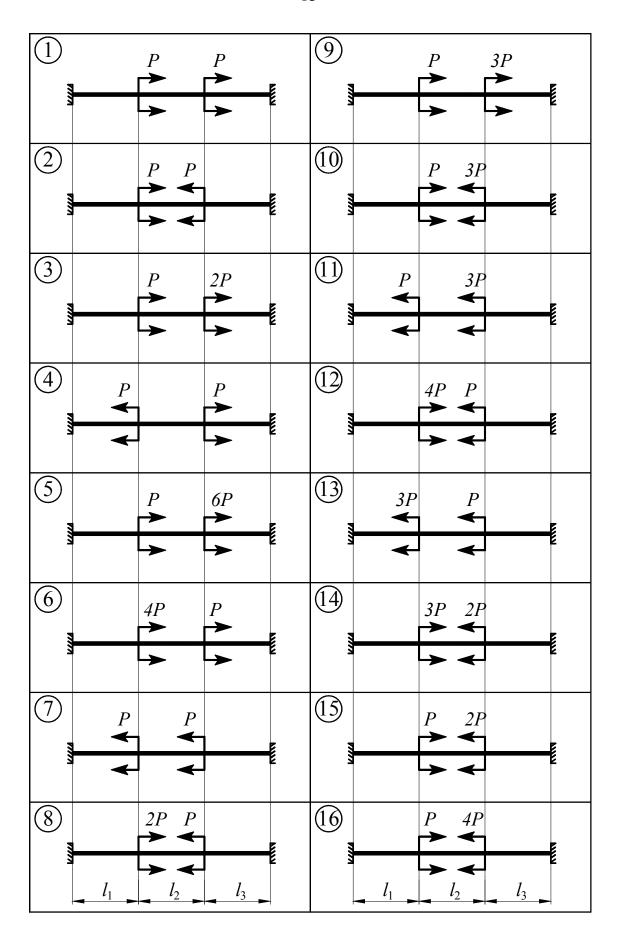


Рис. 2. Схемы к задаче 1.2

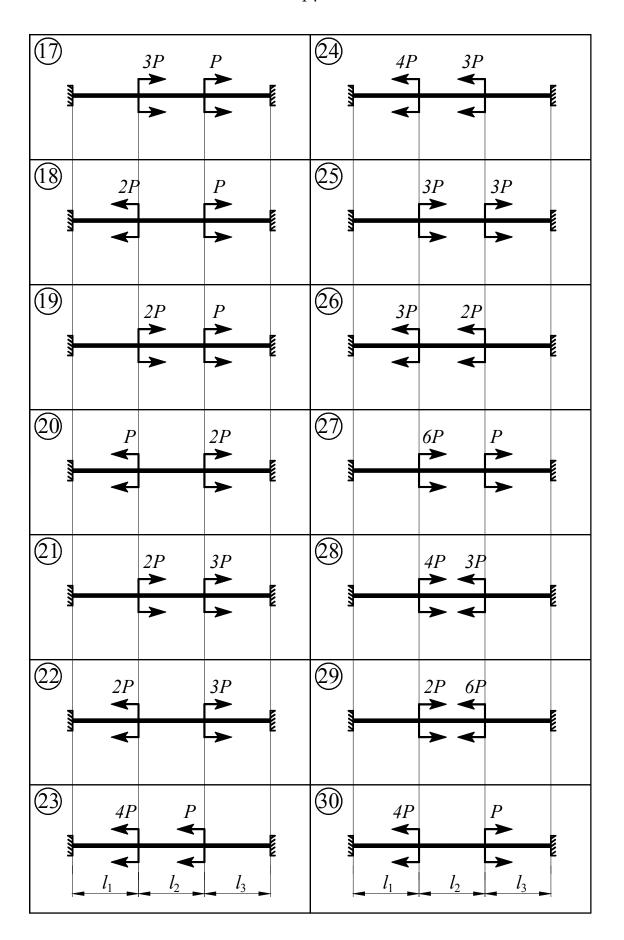


Рис. 2. Схемы к задаче 1.2 (окончание)

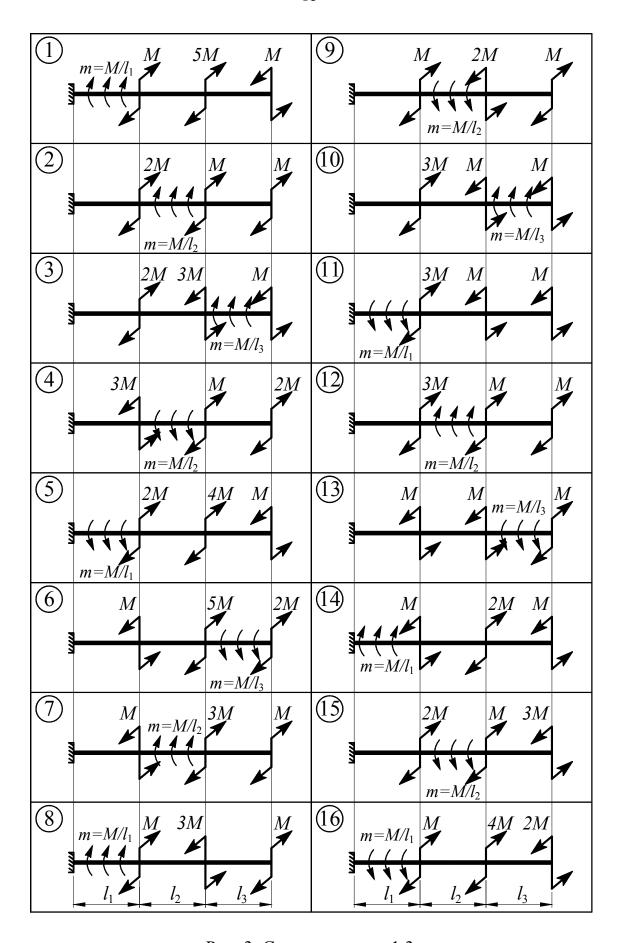


Рис. 3. Схемы к задаче 1.3

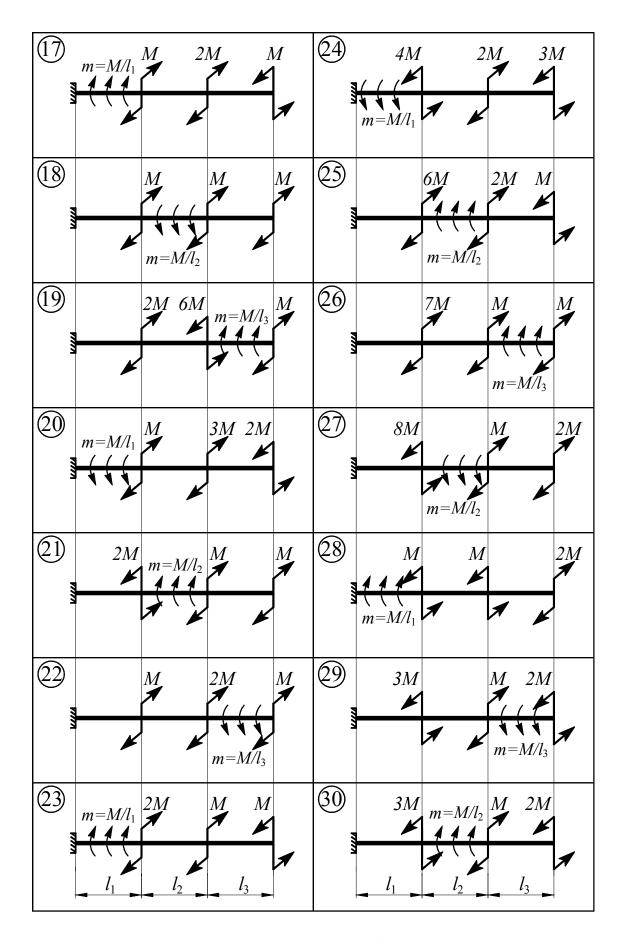


Рис. 3. Схемы к задаче 1.3 (окончание)

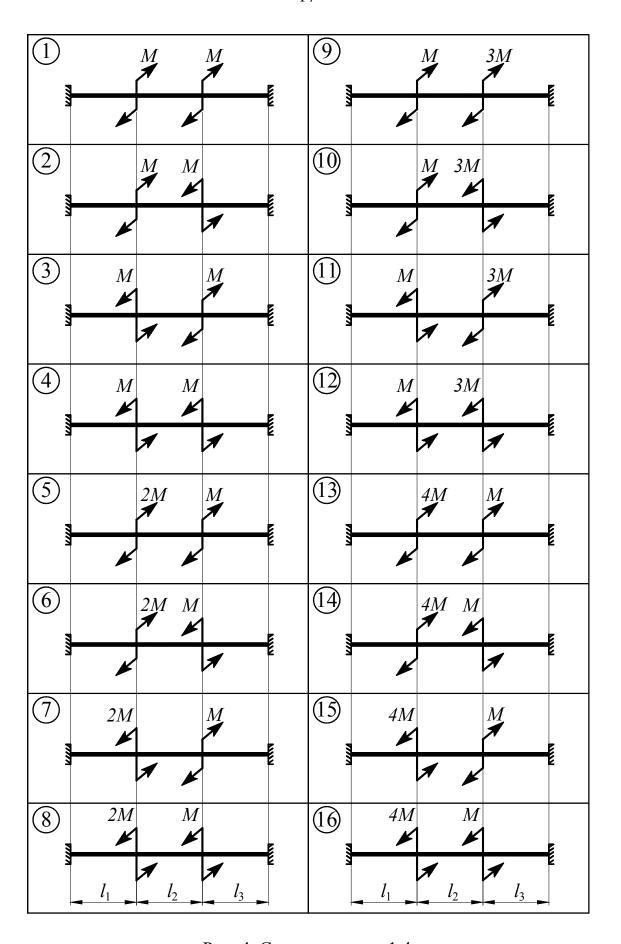


Рис. 4. Схемы к задаче 1.4

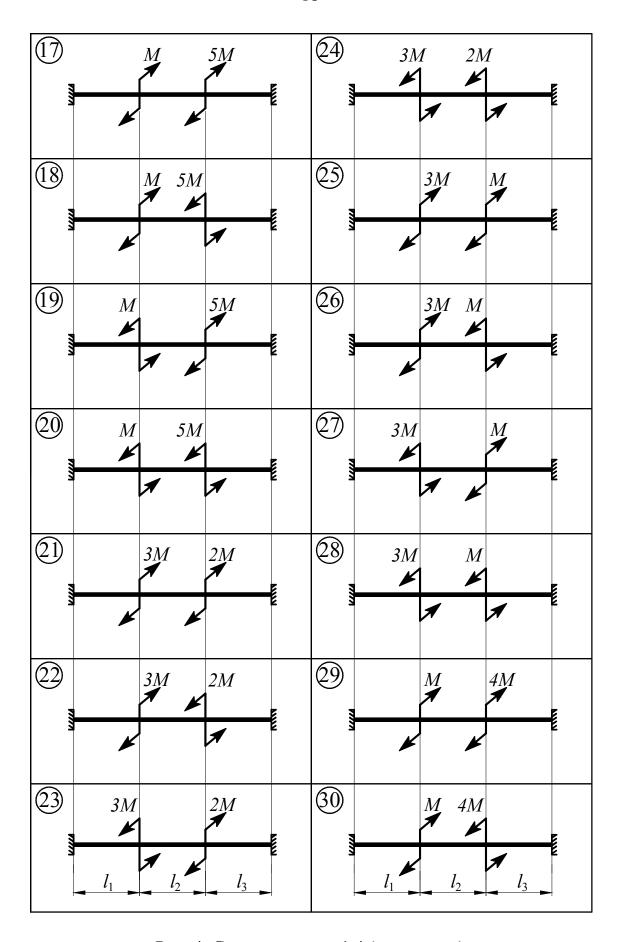


Рис. 4. Схемы к задаче 1.4 (окончание)

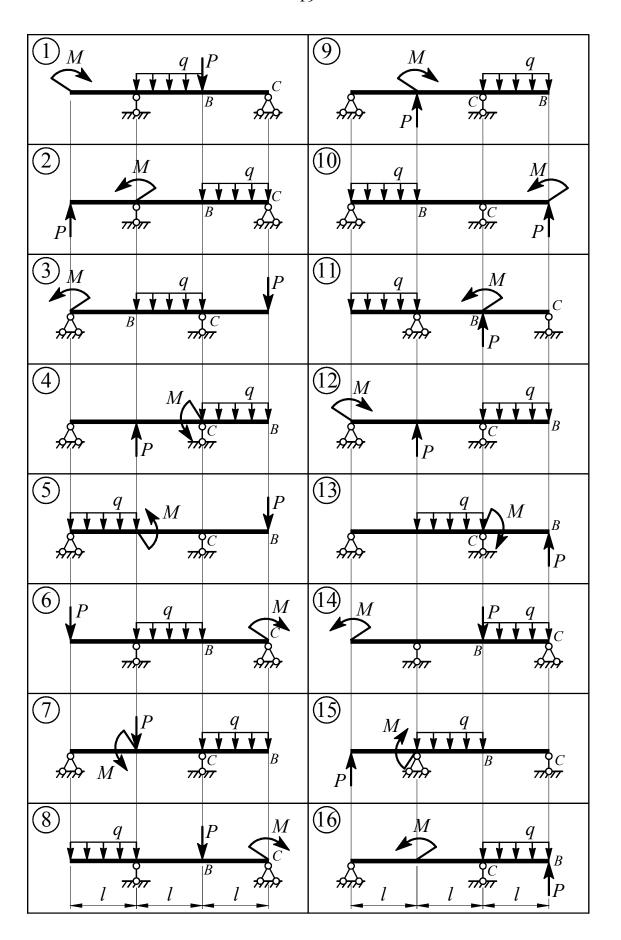


Рис. 5. Схемы к задачам 2.1, 2.3

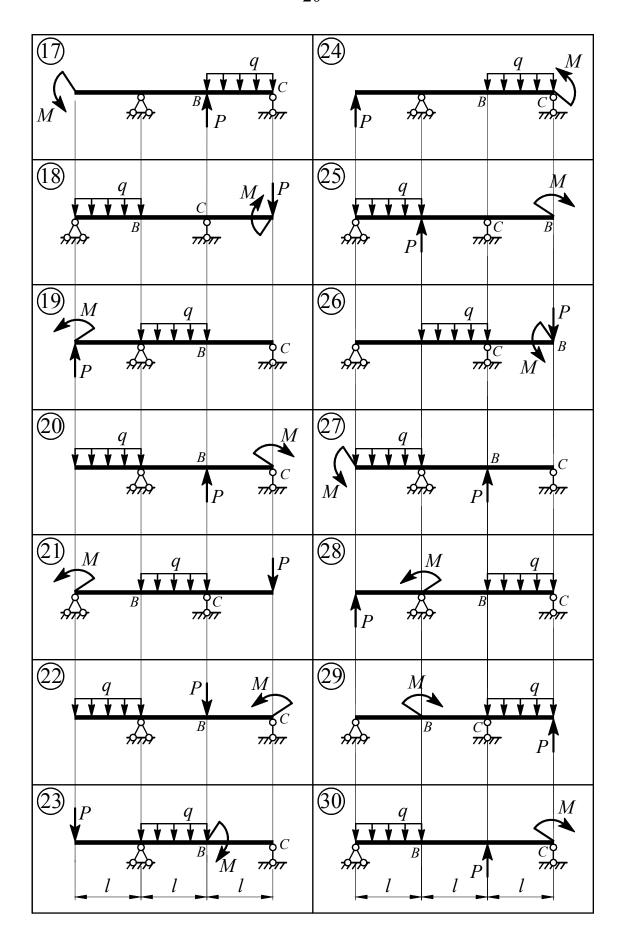


Рис. 5. Схемы к задаче 2.1, 2.3 (окончание)

21

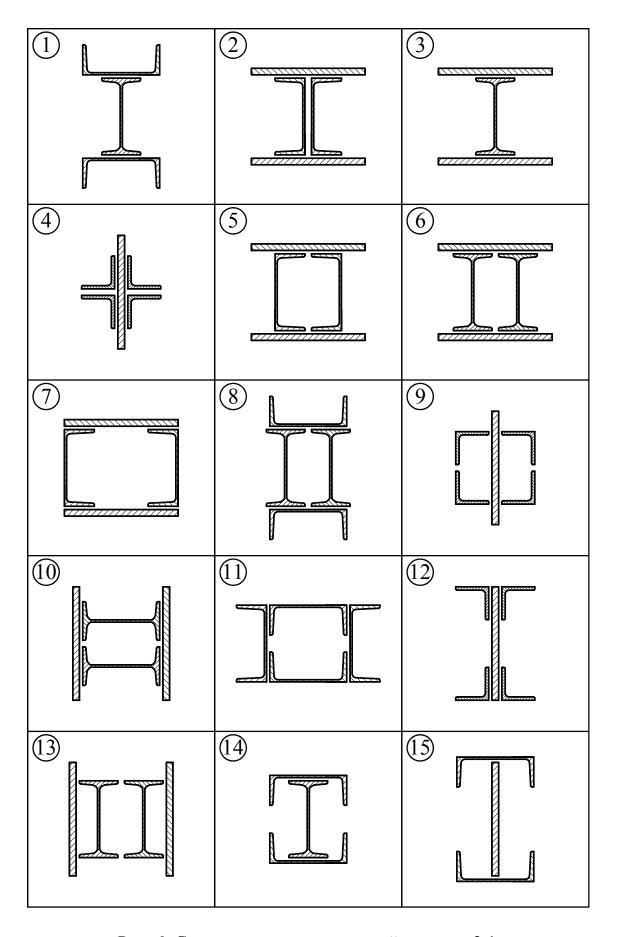


Рис. 6. Схемы поперечных сечений к задаче 2.1

22

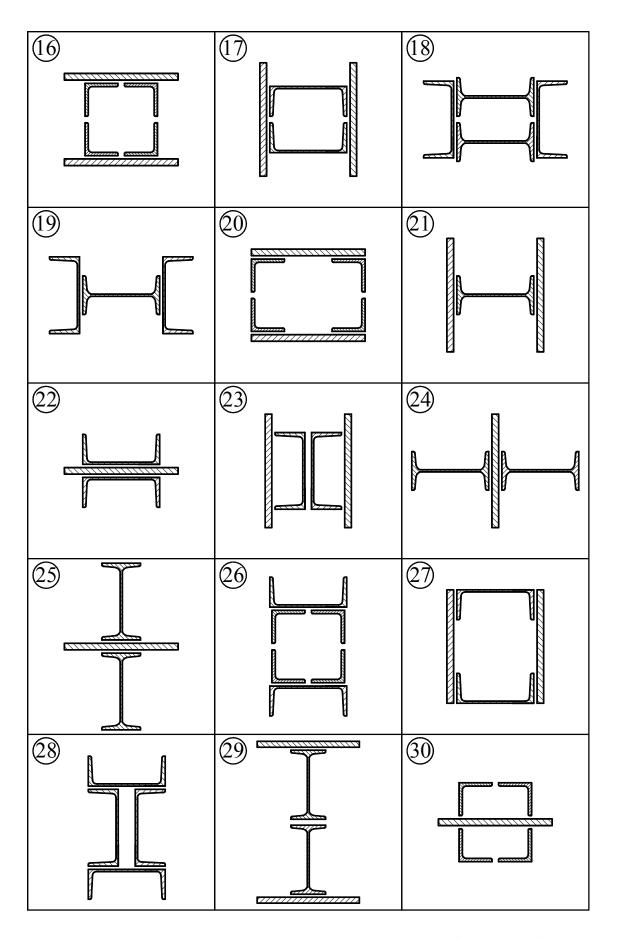


Рис. 6. Схемы поперечных сечений к задаче 2.1 (окончание)

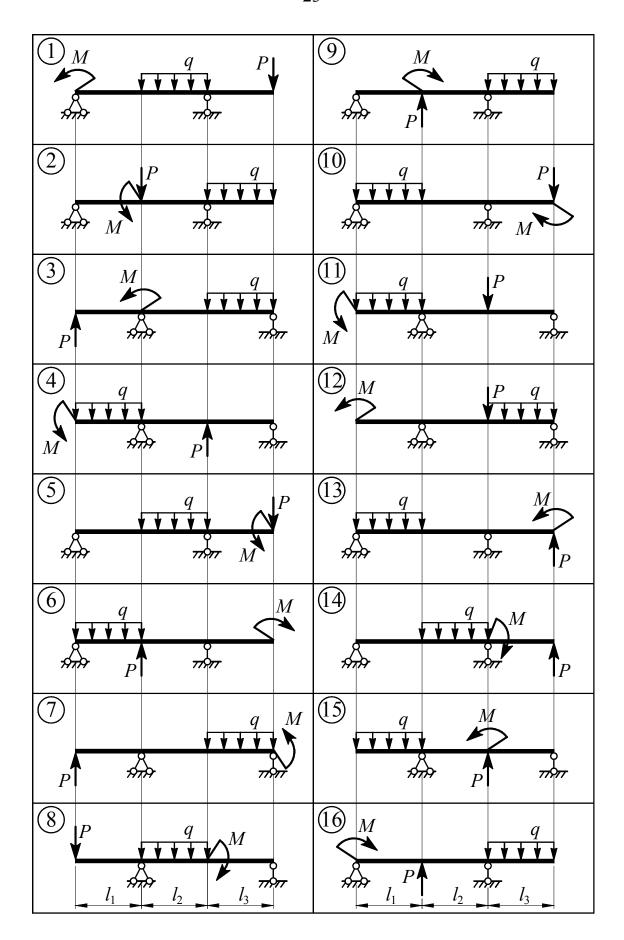


Рис. 7. Схемы к задаче 2.2

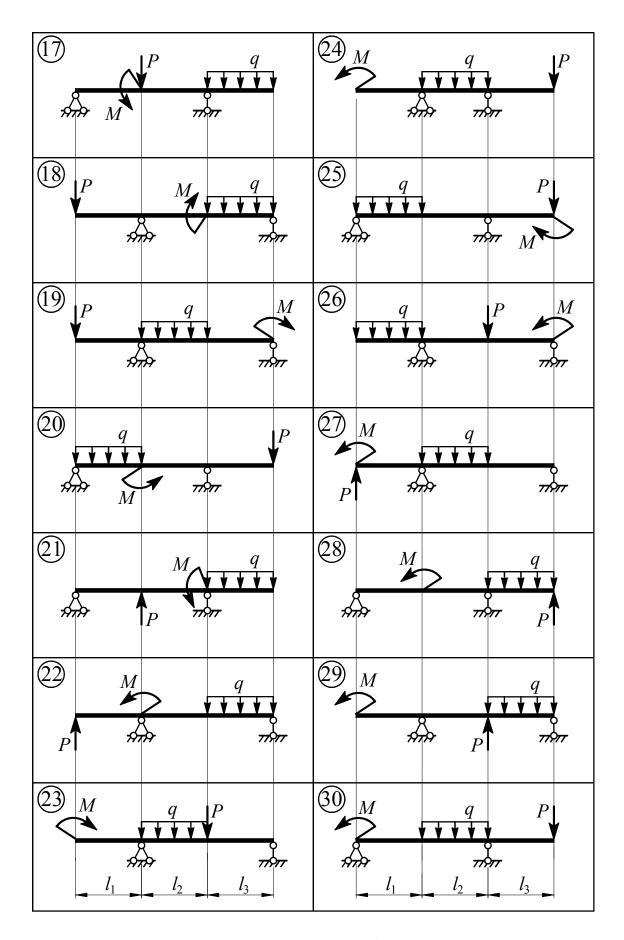


Рис. 7. Схемы к задаче 2.2 (окончание)

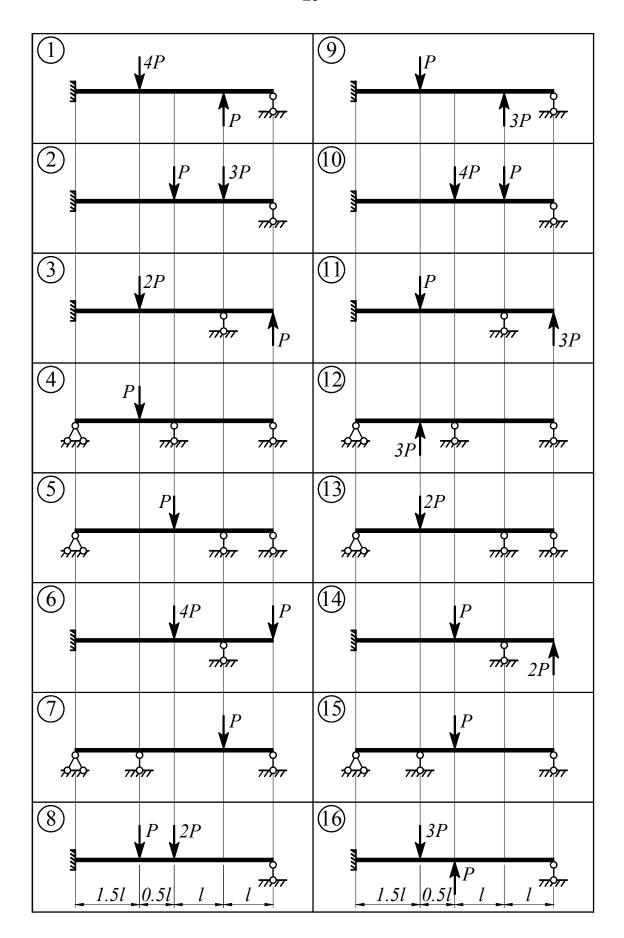


Рис. 8. Схемы к задаче 2.4

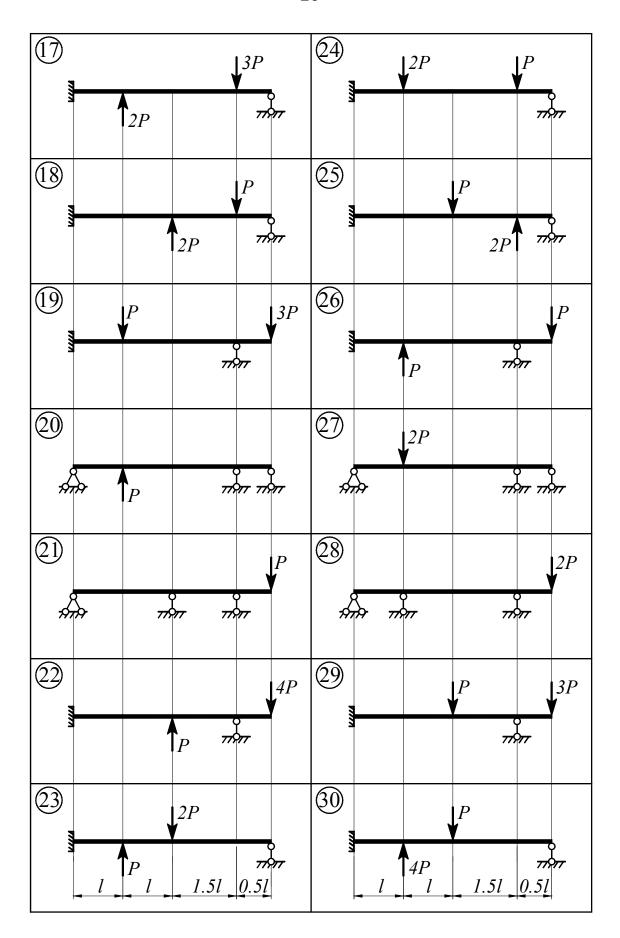


Рис. 8. Схемы к задаче 2.4 (окончание)

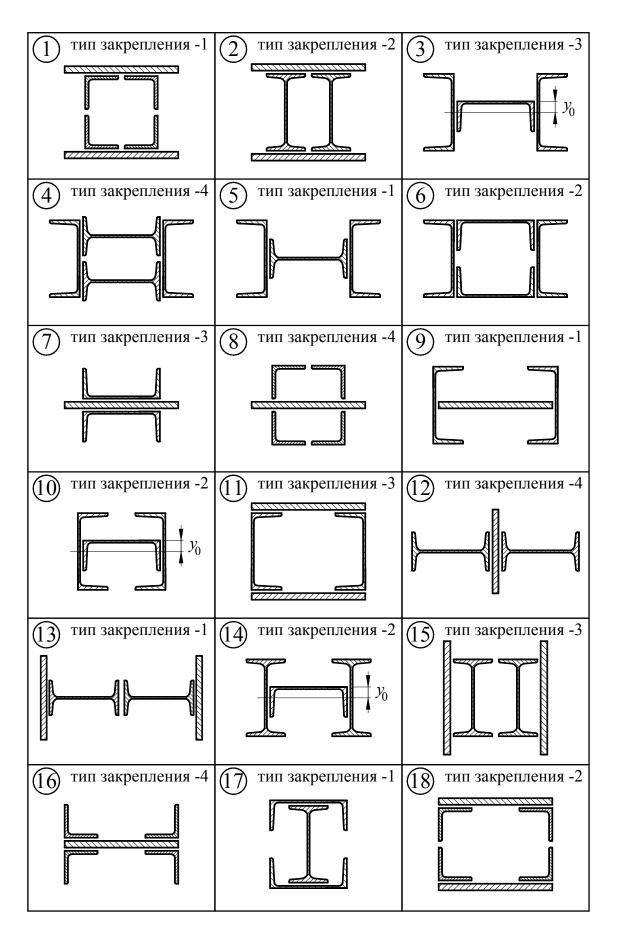


Рис. 9. Схемы поперечных сечений к задаче 3.1

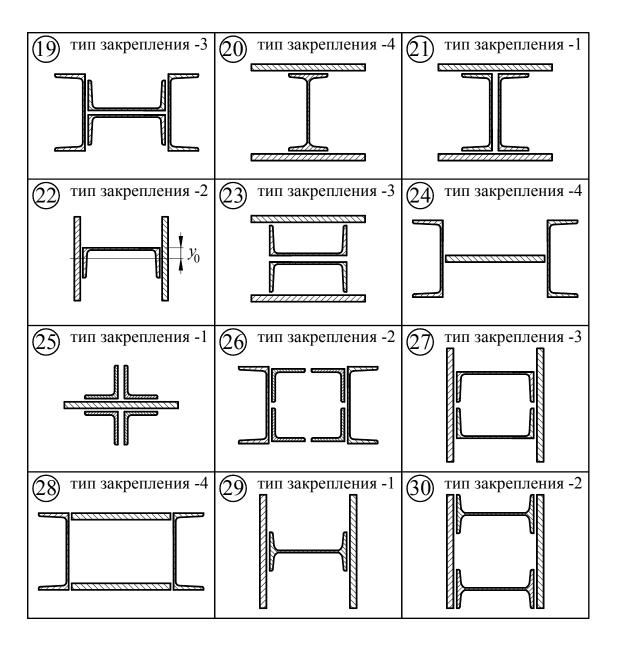


Рис. 9. Схемы поперечных сечений к задаче 3.1 (окончание)

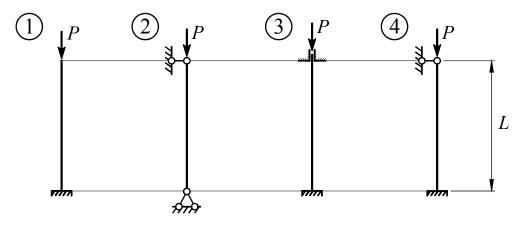
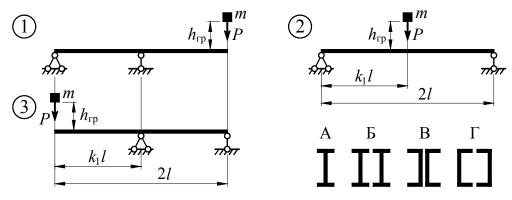



Рис. 10. Схемы закрепления стержней к задаче 3.1

No	Схема	Схема	104 145	h см	δ·10³,	k
варианта	балки	сечения	m , K Γ	$h_{\rm rp}$, cm	м/кН	k_1
1	1	В	25	10	12	0,5
2	2	Γ	30	11	14	0,5
3	3	A	35	12	15	0,5
4	1	Б	40	13	16	1,4
5	2	В	45	14	18	1,4
6	3	Γ	50	15	20	1,4
7	1	A	55	16	22	0,6
8	2	Б	60	17	24	0,6
9	3	В	65	18	25	0,6
10	1	Γ	70	19	26	1,3
11	2	A	75	20	28	1,3
12	3	Б	80	10	30	1,3
13	1	В	85	11	32	0,7
14	2	Γ	90	12	34	0,7
15	3	A	95	13	35	0,7
16	1	Б	100	14	36	1,2
17	2	В	105	15	38	1,2
18	3	Γ	110	16	40	1,2
19	1	A	115	17	10	0,8
20	2	Б	120	18	12	0,8
21	3	В	125	19	14	0,8
22	1	Γ	130	20	15	1,1
23	2	A	135	10	16	1,1
24	3	Б	140	11	18	1,1
25	1	В	145	12	20	1
26	2	Γ	150	13	22	1
27	3	A	155	14	24	1
28	1	Б	160	15	25	0,5
29	2	В	165	16	28	0,5
30	3	Γ	170	17	30	0,5

Рис. 11. Исходные данные к задаче 3.2

СПРАВОЧНЫЕ МАТЕРИАЛЫ

Таблица 4 Единицы измерения используемых геометрических и механических величин в международной системе единиц (СИ)

Обозначение		Обозначение
величины	Наименование величины	единицы
2 44111 1111121	<u>_</u>	измерения
l	Длина	M
F	Площадь	м ²
S_x, S_y	Статические моменты поперечного сечения	\mathbf{M}^3
$W_x, W_y,$	Моменты сопротивления поперечного сечения	3
W_p, W_{kp}	кинэрээ	
$J_{x}, J_{y}, J_{p}, J_{xy},$ $J_{\text{KP}}, J_{1}, J_{2}$	Моменты инерции поперечного сечения	м ⁴
i_x, i_y	Радиусы инерции поперечного сечения	M
P	Сила	Н
M	Момент силы	Н∙м
q	Интенсивность погонной нагрузки	Н/м
m	Интенсивность погонного момента	Н·м/м
A	Работа силы	Дж=Н⋅м
U	Потенциальная энергия	Дж=Н∙м
σ, τ	Напряжения	$\Pi a = H/M^2$, М Πa
E,G	Модули упругости и сдвига	$\Pi a = H/M^2$, М Πa
μ	Коэффициент Пуассона	
ε, γ	Деформации	
α	Коэффициент линейного расширения	1/°C
ρ	Плотность (удельная масса)	$\kappa\Gamma/M^3$

Соотношения между единицами измерения величин

Сила (Ньютон, килоНьютон): $1 H = 1 \frac{\kappa \Gamma \cdot M}{\text{cek}^2} = 10^{-3} \text{ kH}$;

Напряжение (Паскаль, мега Паскаль): 1 МПа = $10^6 \frac{H}{M^2} = 10^3 \frac{\kappa H}{M^2} = 0, 1 \frac{\kappa H}{cm^2}$.

Таблица 5 Кратные и дольные единицы международной системы единиц (СИ)

Приставка	Обозначение	Множитель	Приставка	Обозначение	Множитель
дека	да	10	деци	Д	10^{-1}
гекто	Γ	10^2	санти	С	10^{-2}
кило	К	10^3	МИЛЛИ	M	10^{-3}
мега	M	10^{6}	микро	МК	10^{-6}
гига	Γ	10 ⁹	нано	Н	10 ⁻⁹
тера	T	10 ¹²	пико	П	10^{-12}

Таблица 6 Некоторые механические и физические характеристики конструкционных материалов*

Материал	$σ_{_{\rm T}}(σ_{0,2}),$ ΜΠα	$σ_{\rm Bp}$ / $σ_{\rm Bc}$, ΜΠ a	μ	$E \cdot 10^{-5}$, M Π a	ρ, κγ/m ³	$\alpha \cdot 10^5$, 1/град °C
Углеродистая сталь	240	400	0,28	2	7850	1,2
Легированная сталь	800	1000	0,3	2,1	7850	1,2
Дюралюминий	290	440	0,31	0,71	2800	2,3
Бронза	150	240	0,34	1,1	8800	1,8
Латунь	140	400	0,35	1,05	8600	1,83
Титановый сплав	950	1200	0,3	1,1	4500	0,85
Чугун		150 / 600	0,25	1,6	7400	1,05
Гранит		3 / 120	_	0,49	2600	0,74
Бетон		1,2 / 10	0,2	0,2	2200	1,2

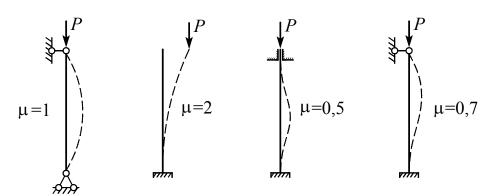
 $\sigma_{\rm T}$ — физический предел текучести при растяжении; $\sigma_{0,2}$ — условный предел текучести; $\sigma_{\rm Bp}$ — предел прочности при растяжении; $\sigma_{\rm Bc}$ — предел прочности при сжатии; μ — коэффициент Пуассона; E — модуль упругости; ρ — плотность (удельная масса); α — коэффициент линейного расширения.

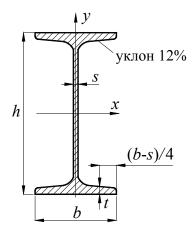
^{*} Приведенные в таблице справочные данные являются примерными, предназначены для решения учебных задач и не отражают всего разнообразия видов конструкционных материалов и их характеристик

Таблица 7 **Геометрические характеристики некоторых плоских** поперечных сечений

Форма сечения	Площадь се-	Моменты	Моменты
чения F		инерции	сопротивления
h y x	bh	$J_x = \frac{bh^3}{12}$ $J_y = \frac{hb^3}{12}$	$W_x = \frac{bh^2}{6}$ $W_y = \frac{hb^2}{6}$
$H = \begin{bmatrix} b \\ B \end{bmatrix}$	BH – bh	$J_{x} = \frac{BH^{3} - bh^{3}}{12}$ $J_{y} = \frac{HB^{3} - hb^{3}}{12}$	$W_x = \frac{BH^3 - bh^3}{6H}$ $W_y = \frac{HB^3 - hb^3}{6B}$
	$\frac{\pi D^2}{4}$	$J_x = J_y = \frac{\pi D^4}{64}$ $J_{\text{kp}} = J_p = \frac{\pi D^4}{32}$	$W_x = W_y = \frac{\pi D^3}{32}$ $W_{\text{kp}} = W_p = \frac{\pi D^3}{16}$
	$\frac{\pi(D^2 - d^2)}{4} = \frac{\pi D^4}{4} \left[1 - \left(\frac{d}{D}\right)^2 \right]$	$J_{x} = J_{y} =$ $= \frac{\pi D^{4}}{64} \left[1 - \left(\frac{d}{D} \right)^{4} \right]$ $J_{\text{kp}} = J_{p} =$ $= \frac{\pi D^{4}}{32} \left[1 - \left(\frac{d}{D} \right)^{4} \right]$	$W_x = W_y =$ $= \frac{\pi D^3}{32} \left[1 - \left(\frac{d}{D}\right)^4 \right]$ $W_{\text{kp}} = W_p =$ $= \frac{\pi D^3}{16} \left[1 - \left(\frac{d}{D}\right)^4 \right]$

Значения коэффициента приведения длины центрально-сжатого стержня постоянного поперечного сечения




Таблица 8 Значения коэффициента ф в зависимости от гибкости центрально-сжатого стержня

Гибкость		Значения коэффициента ф					
λ	Стали марок Ст2, Ст3,Ст4	Сталь Ст5	Чугун	Дюраль Д16Т	Сосна		
0	1,00	1,00	1,00	1,00	1,00		
10	0,99	0,98	0,96	0,999	0,99		
20	0,97	0,95	0,91	0,998	0,97		
30	0,95	0,92	0,81	0,835	0,93		
40	0,92	0,89	0,69	0,70	0,87		
50	0,89	0,86	0,57	0,568	0,80		
60	0,86	0,82	0,44	0,455	0,71		
70	0,81	0,76	0,34	0,353	0,61		
80	0,75	0,70	0,26	0,269	0,49		
90	0,69	0,62	0,20	0,212	0,38		
100	0,60	0,51	0,16	0,172	0,31		
110	0,52	0,43	_	0,142	0,25		
120	0,45	0,37	_	0,119	0,22		
130	0,40	0,33	_	0,101	0,18		
140	0,36	0,29	_	0,087	0,16		
150	0,32	0,26	_	0,076	0,14		
160	0,29	0,24	_	_	0,12		
170	0,26	0,21	_	_	0,11		
180	0,23	0,19	_	_	0,10		
190	0,21	0,17	_	_	0,09		
200	0,19	0,16	_		0,08		

СОРТАМЕНТ ПРОКАТНЫХ ПРОФИЛЕЙ

Таблица 9

Двутавры стальные горячекатаные с уклоном полок по ГОСТ 8239-89

h — высота двутавра;

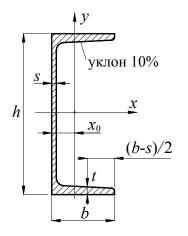
b — ширина полки;

s — толщина стенки;

t — средняя толщина полки;

 J_x , J_y — моменты инерции;

 W_x , W_y — моменты сопротивления;


 i_x , i_y — радиусы инерции;

 S_x — статический момент полусечения.

	D	021/01	31 I A	n.r			Справочные значения для осей								
Номер	Размеры, мм				Площадь	Macca		х	у						
дву- тавра	1	b			сечения, см ²	1 м, кг	J_x ,	W_x ,	i_x ,	S_x ,	J_y ,	W_y ,	i_y ,		
	h		S	t			cm ⁴	см3	СМ	cm ³	cm ⁴	см3	СМ		
10	100	55	4,5	7,2	12	9,46	198	39,7	4,06	23	17,9	6,49	1,22		
12	120	64	4,8	7,3	14,7	11,5	350	58,4	4,88	33,7	27,9	8,72	1,38		
14	140	73	4,9	7,5	17,4	13,7	572	81,7	5,73	46,8	41,9	11,5	1,55		
16	160	81	5	7,8	20,2	15,9	873	109	6,57	62,3	58,6	14,5	1,7		
18	180	90	5,1	8,1	23,4	18,4	1290	143	7,42	81,4	82,6	18,4	1,88		
20	200	100	5,2	8,4	26,8	21	1840	184	8,28	104	115	23,1	2,07		
22	220	110	5,4	8,7	30,6	24	2550	232	9,13	131	157	28,6	2,27		
24	240	115	5,6	9,5	34,8	27,3	3460	289	9,97	163	198	34,5	2,37		
27	270	125	6	9,8	40,2	31,5	5010	371	11,2	210	260	41,5	2,54		
30	300	135	6,5	10,2	46,5	36,5	7080	472	12,3	268	337	49,9	2,69		
33	330	140	7	11,2	53,8	42,2	9840	597	13,5	339	419	59,9	2,79		
36	360	145	7,5	12,3	61,9	48,6	13380	743	14,7	423	516	71,1	2,89		
40	400	155	8,3	13	72,6	57	19062	953	16,2	545	667	86,1	3,03		
45	450	160	9	14,2	84,7	66,5	27696	1231	18,1	708	808	101	3,09		
50	500	170	10	15,2	100	78,5	39727	1589	19,9	919	1043	123	3,23		
55	550	180	11	16,5	118	92,6	55962	2035	21,8	1181	1356	151	3,39		
60	600	190	12	17,8	138	108	76806	2560	23,6	1491	1725	182	3,54		

Таблица 10

Швеллеры стальные горячекатаные с уклоном полок по ГОСТ 8240–97

h — высота швеллера;

b — ширина полки;

s — толщина стенки;

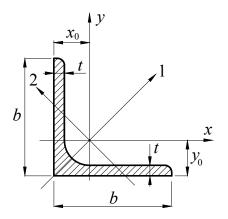
t — средняя толщина полки;

 J_x , J_y — моменты инерции;

 W_x , W_y — моменты сопротивления;

 i_x , i_y — радиусы инерции;

 S_x — статический момент полусечения;


 x_0 — расстояние от оси y до наружной

грани стенки.

	De					Масса 1 м, кг	Справочные значения для осей							
Номер	Pa	ізмер) Ы, Ν	MM	Площадь			y			x_0 ,			
швеллера	1.	1.			сечения, см ²		J_{x} ,	W_x ,	i_x ,	S_x ,	J_y ,	W_y ,	i_y ,	СМ
	h	b	S	t	U 112		cm ⁴	см3	см	см ³	cm ⁴	см3	СМ	
5	50	32	4,4	7	6,16	4,84	22,8	9,1	1,92	5,59	5,61	2,75	0,95	1,16
6,5	65	36	4,4	7,2	7,51	5,9	48,6	15	2,54	9	8,7	3,68	1,08	1,24
8	80	40	4,5	7,4	8,98	7,05	89,4	22,4	3,16	13,3	12,8	4,75	1,19	1,31
10	100	46	4,5	7,6	10,9	8,59	174	34,8	3,99	20,4	20,4	6,46	1,37	1,44
12	120	52	4,8	7,8	13,3	10,4	304	50,6	4,78	29,6	31,2	8,52	1,53	1,54
14	140	58	4,9	8,1	15,6	12,3	491	70,2	5,6	40,8	45,4	11	1,7	1,67
16	160	64	5	8,4	18,1	14,2	747	93,4	6,42	54,1	63,3	13,8	1,87	1,8
16a	160	68	5	9	19,5	15,3	823	103	6,49	59,4	78,8	16,4	2,01	2
18	180	70	5,1	8,7	20,7	16,3	1090	121	7,24	69,8	86	17	2,04	1,94
18a	180	74	5,1	9,3	22,2	17,4	1190	132	7,32	76,1	105	20	2,18	2,13
20	200	76	5,2	9	23,4	18,4	1520	152	8,07	87,8	113	20,5	2,2	2,07
22	220	82	5,4	9,5	26,7	21	2110	192	8,89	110	151	25,1	2,37	2,21
24	240	90	5,6	10	30,6	24	2900	242	9,37	139	208	31,6	2,6	2,42
27	270	95	6	10,5	35,2	27,7	4160	308	10,9	178	262	37,3	2,73	2,47
30	300	100	6,5	11	40,5	31,8	5810	387	12	224	327	43,6	2,84	2,52
33	330	105	7	11,7	46,5	36,5	7980	484	13,1	281	410	51,8	2,97	2,59
36	360	110	7,5	12,6	53,4	41,9	10200	601	14,2	350	513	61,7	3,1	2,68
40	400	115	8	13,5	61,5	48,3	15220	761	15,7	444	642	73,4	3,23	2,75

Таблица 11

Уголки стальные горячекатаные равнополочные по ГОСТ 8509–93 (выборка)

b — ширина полки; t — толщина полки; $J_x = J_y$ — моменты инерции; $i_x = i_y$ — радиусы инерции; J_{xy} — центробежный момент инерции; $x_0 = y_0$ — расстояние от центра тяжести до наружной грани полки; оси 1 и 2 — главные центральные оси.

	Размеры,				Спр							
Номер	M	M	Площадь	Macca	х		1		2		J_{xy} ,	x_0 ,
уголка	b	t	сечения, см ²	1 м, кг	J_{x} ,	i_{x} ,	J_1 ,	i_1 ,	J_2 ,	i_2 ,	cm ⁴	см
					cm ⁴	СМ	cm ⁴	СМ	cm ⁴	СМ		
		3	2,35	1,85	3,55	1,23	5,63	1,55	1,47	0,79	2,08	1,09
4	40	4	3,08	2,42	4,58	1,22	7,25	1,53	1,90	0,78	2,68	1,13
		5	3,79	2,98	5,53	1,21	8,75	1,52	2,3	0,78	3,22	1,17
		3	2,65	2,08	5,13	1,39	8,13	1,75	2,12	0,89	3,0	1,21
4,5	45	4	3,48	2,73	6,63	1,38	10,52	1,74	2,74	0,89	3,89	1,26
		5	4,29	3,37	8,03	1,37	12,74	1,72	3,33	0,88	4,71	1,30
		3	2,96	2,32	7,11	1,55	11,27	1,95	2,95	1,0	4,16	1,33
5	50	4	3,89	3,05	9,21	1,54	14,53	1,94	3,8	0,99	5,42	1,38
		5	4,80	3,77	11,2	1,53	17,77	1,92	4,63	0,98	6,57	1,42
		4	4,96	3,90	18,86	1,95	29,9	2,45	7,81	1,25	11	1,69
6,3	63	5	6,13	4,81	23,1	1,94	35,8	2,44	9,52	1,25	13,7	1,74
		6	7,28	5,72	27,06	1,93	42,91	2,43	11,18	1,24	15,9	1,78
	70	5	6,86	5,38	31,94	2,16	50,67	2,72	13,22	1,39	18,7	1,90
7		6	8,15	6,39	37,58	2,15	59,64	2,71	15,52	1,38	22,1	1,94
		7	9,42	7,39	42,98	2,14	68,19	2,69	17,77	1,37	25,2	1,99
		5	7,39	5,8	39,53	2,31	62,6	2,91	16,41	1,49	23,1	2,02
		6	8,78	6,89	46,57	2,3	'72, 87	2,9	19,28	1,48	27,3	2,06
7,5	75	7	10,15	7,96	53,34	2,29	86,81	2,89	22,07	1,47	31,2	2,10
		8	11,50	9,02	59,84	2,28	94,89	2,87	24,8	1,47	35	2,15
		9	12,83	10,07	66,1	2,27	104,72	2,86	27,48	1,46	38,6	2,18
		6	9,38	7,36	56,97	2,47	90,40	3,11	23,54	1,58	33,4	2,19
8	80	7	10,85	8,51	65,31	2,45	103,60	3,09	26,97	1,58	38,3	2,23
		8	12,30	9,65	73,36	2,44	116,39	3,08	30,32	1,57	43	2,27
		6	10,61	8,33	82,1	2,78	130,00	3,5	33,97	1,79	48,1	2,43
9	90	7	12,28	9,64	94,3	2,77	149,67	3,49	38,94	1,78	55,4	2,47
		8	13,93	10,93	106,11	2,76	168,42	3,48	43,8	1,77	62,3	2,51

Продолжение таблицы 11

	Разме	еры,			Спр	равоч	ные знач	ения	для осей	ź		
Номер	M	M	Площадь сечения, см ²	Масса 1 м, кг	х		1		2		$ J_{xy} ,$	x_0 ,
уголка	b	+			J_{x} ,	i_{x} ,	J_1 ,	i_1 ,	J_2 ,	i_2 ,	cm ⁴	СМ
	D	t	0111		cm ⁴	см	cm ⁴	см	cm ⁴	СМ		
		7	13,75	10,79	130,59	3,08	207,01	3,88	54,16	1,98	76,4	2,71
		8	15,6	12,25	147,19	3,07	233,46	3,87	60,92	1,98	86,3	2,75
10	100	10	19,24	15,10	178,95	3,05	283,83	3,84	74,08	1,96	110	2,83
10	100	12	22,8	17,90	208,9	3,03	330,95	3,81	86,84	1,95	122	2,91
		14	26,28	20,63	237,15	3	374,98	3,78	99,32	1,94	138	2,99
		16	29,68	23,3	263,82	2,98	416,04	3,74	111,61	1,94	152	3,06
11	110	7	15,15	11,89	175,61	3,4	276,54	4,29	72,68	2,19	106	2,96
11	110	8	17,2	13,5	198,17	3,39	314,51	4,28	81,83	2,18	116	3
		8	19,69	15,46	294,36	3,87	466,76	4,87	121,98	2,49	172	3,36
		9	22	17,30	327,48	3,86	520,00	4,86	135,88	2,48	192	3,40
12,5	125	10	24,33	19,10	359,82	3,85	571,04	4,84	148,59	2,47	211	3,45
12,3		12	28,89	22,68	422,23	3,82	670,02	4,82	174,43	2,46	248	3,53
		14	33,37	26,20	481,76	3,8	763,90	4,78	199,62	2,45	282	3,61
		16	37,37	29,65	538,56	3,78	852,84	4,75	224,29	2,44	315	3,68
	140	9	24,72	19,41	465,72	4,34	739,42	5,47	192,03	2,79	274	3,78
14		10	27,33	21,45	512,29	4,33	813,62	5,46	210,96	2,78	301	3,82
		12	32,49	25,5	602,49	4,31	956,98	5,43	248,01	2,76	354	3,9
	160	10	31,43	24,67	774,24	4,96	1229,10	6,25	319,38	3,19	455	4,30
		11	34,42	27,02	844,21	4,95	1340,06	6,24	347,77	3,18	496	4,35
		12	37,39	28,35	912,89	4,94	1450,00	6,23	375,78	3,17	537	4,39
16		14	43,57	33,97	1046,47	4,92	1662,13	6,2	430,81	3,16	615	4,47
		16	49,07	38,52	1175,19	4,89	1865,73	6,17	484,64	3,14	690	4,55
		18	54,79	43,01	1290,24	4,87	2061,03	6,13	537,46	3,13	771	4,63
		20	60,4	47,44	1418,85	_	2248,26	_	589,43	3,12	830	4,7
18	180	11	38,8	30,47	1216,44	5,60	1933,1	7,06	499,78	3,59	716	4,85
10	100	12	42,19	33,12	1316,62	5,59	2092,78	7,04	540,45	3,58	776	4,89
		12	47,1	36,97	1822,78		2896,16		749,4	3,99	1073	5,37
		13	50,85	39,92	1960,77	6,21	3116,18	7,83	805,35	3,98	1156	5,42
		14	54,6	42,80	2097,00		3333,00		861,00	3,97	1236	5,46
20	200	16	61,98	48,65	2362,57		3755,39		969,74	3,96	1393	5,54
		20	76,54	60,08			4560,42				1689	5,7
		25	94,29	74,02	3466,21				1438,38		2028	5,89
		30	111,54	87,56	4019,6	6	1		1698,16		2332	6,07
22	220	14	60,38	47,40	2814,36	_			1158,56		1655	5,91
	220	16	68,58	53,83	3175,44				1305,52		1869	6,02
		16	78,4	61,55	4717,1	7,76			1942,09		2775	6,75
25	250	18	87,72	68,86	5247,24				2157,78		3089	6,83
	<i>23</i> 0	20	96,96	76,11	5764,87	_			2370,01	- í	3395	6,91
		22	106,12	83,31	6270,32	7,09	9961,6	9,69	2579,04	4,93	3691	7

ТЕХНИЧЕСКАЯ МЕХАНИКА, СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

Методические указания

для самостоятельного выполнения расчетно-графической работы и лабораторного практикума

Составители: А. А. Алексеев, к.т.н., доц., ТвГТУ,

Е. Г. Алексеева, к.т.н., доц., ТвГТУ,

В. Н. Ведерников, к.т.н., доц., ТвГТУ,

С. А. Соколов, к.т.н., доц. каф. СМТУиП, ТвГТУ.

Технический редактор

Печ.л. Усл.печ.л. Уч.-изд.л.

РИЦ ТвГТУ

170026, Тверь, наб. Афанасия Никитина, 22