Методические указания

к выполнению лабораторных работы по дисциплине «ОСНОВЫ НАДЕЖНОСТИ ТЕХНОЛОГИЧЕСКИХ СИСТЕМ»

для студентов направления

151900 «Конструкторско-технологическое обеспечение машиностроительных производств»

Методические указания, содержащие рекомендации по содержанию и выполнению лабораторных работ по дисциплине «Основы надежности технологических систем» для студентов направления 151900 «Конструкторско-технологическое обеспечение машиностроительных производств» ВлГУ.

Методические указания составлены на основе требований ФГОС ВПО и ООП направления 151900 «Конструкторско-технологическое обеспечение машиностроительных производств», рабочей программы дисциплины «Основы надежности технологических систем». В качестве рекомендации для организации эффективной работы студентов использованы методические пособия ведущих вузов России.

ОГЛАВЛЕНИЕ

Введение	4
ЛАБОРАТОРНАЯ РАБОТА №1. ИССЛЕДОВАНИЕ ЗАДАЧ, БАЗИРУЮЩИХСЯ НА	
АППАРАТЕ ТЕОРИИ ВЕРОЯТНОСТЕЙ. СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ЗАКОНЫ ИХ	
	5
ЛАБОРАТОРНАЯ РАБОТА №2. ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИ	
НЕВОССТАНАВЛИВАЕМЫХ СИСТЕМ	. 10
ЛАБОРАТОРНАЯ РАБОТА №3. ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИ	
ВОССТАНАВЛИВАЕМЫХ СИСТЕМ	. 14
ЛАБОРАТОРНАЯ РАБОТА №4. МЕТОДЫ РАСЧЕТА НАДЕЖНОСТИ	
НЕВОССТАНАВЛИВАЕМЫХ СИСТЕМ	. 19
ЛАБОРАТОРНАЯ РАБОТА №5. ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИ	
РЕЗЕРВИРОВАННЫХ СИСТЕМ С ДРОБНОЙ КРАТНОСТЬЮ, ОБЩИМ И	
ПОЭЛЕМЕНТНЫМ РЕЗЕРВИРОВАНИЕМ	. 24
Литература:	. 28

Введение

Целью выполнения лабораторных работ студентом является овладении навыками расчета основных показателей надежности элементов технологических систем с использованием ранее полученных теоретических знаний; формирование самостоятельности мышления, стремления к саморазвитию, самосовершенствованию и самореализации.

Освоение дисциплины «Основы надежности технологических систем» направлено на развитие следующих компетенций:

Профессиональные:

- способностью проводить диагностику состояния и динамики производственных объектов машиностроительных производств с использованием необходимых методов и средств анализа (ПК-17);
- способностью участвовать в разработке математических и физических моделей процессов и объектов машиностроительных производств (ПК-18);
- способностью участвовать в разработке программ и методик испытаний машиностроительных изделий, средств технологического оснащения, автоматизации и управления (ПК-28);
- способностью выполнять работы по моделированию продукции и объектов машиностроительных производств с использованием стандартных пакетов и средств автоматизированного проектирования (ПК- 46);
- способностью выполнять работы по диагностике состояния и динамики объектов машиностроительных производств с использованием необходимых методов и средств анализа (ПК-47).

Целью выполнения лабораторных работ является закрепление теоретического материала по курсу «Основы надежности технологических систем», а так же построение индивидуальной образовательной траектории или работа над заданием в группе. По выполнении каждой лабораторной работы студент составляет отчет.

ЛАБОРАТОРНАЯ РАБОТА №1. ИССЛЕДОВАНИЕ ЗАДАЧ, БАЗИРУЮЩИХСЯ НА АППАРАТЕ ТЕОРИИ ВЕРОЯТНОСТЕЙ. СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ЗАКОНЫ ИХ РАСПРЕДЕЛЕНИЯ

1. Цель работы: Приобретение навыков компьютеризованных расчетов вероятностей случайных событий, а также определения числовых характеристик случайных величин.

2. Краткие теоретические сведения

2.1. Теория вероятностей как математическая основа теории надежности

Как известно, теория надежности технологических систем (TC), в первую очередь, изучает поведение системы с точки зрения возможности появления внезапных или постепенных отказов. Отмеченные отказы представляют собой случайные события, что обуславливает широкое использование в данной области подходов и результатов теории вероятностей.

На практике инженерные расчеты надежности ТС предполагают выполнение операций над случайными событиями, вычисление их вероятностей применительно к различным ситуациям. Приведем ряд соотношений, вытекающих из теории вероятностей и применяемых при расчетах надежности ТС.

2.2. Вероятности композиций случайных событий

Правила выполнения операций, которым соответствуют вероятности результирующих событий, представлены в таблице 1.1.

Таблица 1.1.

Операция (искомая величина)	Условие	Соотношение
Вероятность события	A – случайное событие	$0 \le P(A) \le 1$
1 -	События A_1,A_2,A_n несовместны $(A_iA_j = \emptyset, i \neq j)$	$P\bigg(\sum_{i=1}^n A_i\bigg) = \sum_{i=1}^n P\big(A_i\big)$
Сумма вероятностей полной группы попарно несовместных событий	1	$P\left(\sum_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P\left(A_{i}\right) =$ $= P(U) = 1$
Сумма вероятностей противоположных событий	$\stackrel{-}{A}$ и $\stackrel{-}{A}$ — противоположные события	$P(A) + P(\overline{A}) = 1$
Вероятность суммы совместных событий	События A и B совместны $(AB \neq \emptyset)$	P(A+B) = $= P(A) + P(B) - P(AB)$
	P(B A) — условная вероятность события B при наличии события A	
1	$A_1, \dots A_2, \dots A_n$ — независимые события	$P\bigg(\prod_{i=1}^n A_i\bigg) = \prod_{i=1}^n P\big(A_i\big)$

2.3. Случайные величины и их характеристики

Одним из важнейших понятий теории вероятностей является понятие случайной величины (CB). Закон (функция) распределения F для случайной величины X представляет вероятность P того, что она примет значение, меньшее некоторой заданной величины x:

$$F(x) = P\left\{X < x\right\} \tag{1.1}$$

При этом различают два типа CB: непрерывные и дискретные. Плотность распределения непрерывной CB X в точке x определяется выражением:

$$f(x) = F'(x) = \frac{d}{dx}F(x). \tag{1.2}$$

График плотности распределения f(x) называют кривой распределения.

Вероятность попадания CB в интервал от α до β и функцию F(x) ее распределения при известной функции f(x) можно найти как

$$P\{\alpha < X < \beta\} = \int_{\alpha}^{\beta} f(x) dx, \qquad (1.3)$$

$$F(x) = P\{X < x\} = P\{-\infty < X < x\} = \int_{-\infty}^{x} f(t) dt.$$
(1.4)

Отметим основные свойства плотности распределения:

$$f(x) \ge 0$$
,
$$\int_{-\infty}^{\infty} f(x) dx = 1$$
. (1.5)

Для описания свойств дискретной случайной величины обычно используется так называемый ряд распределения, который может быть представлен в виде таблицы значений вероятностей p_i того, что CB X примет значения x_i ,

$$i = \overline{1, n}$$
:

$$p_i = P\{X = x_i\}, \quad i = \overline{1, n}, \quad \sum_{i=1}^n p_i = 1.$$
 (1.6)

2.4. Числовые характеристики случайных величин

Во многих задачах определении показателей надежности ТС требуется найти отдельные числовые характеристики, указывающие на существенные черты распределения (например, математическое ожидание, дисперсию и т.д.). Такие числовые характеристики и расчетные формулы для их нахождения представлены в таблице 2.1.

Характеристика	Тип случайной величины			
лириктернетики	Дискретная	Непрерывная		
Математическое ожидание (MO) $M[X] = m_x$	$M[X] = \sum_{i=1}^{n} x_i p_i$	$M[X] = \int_{-\infty}^{\infty} x f(x) dx$		
$egin{aligned} & \mbox{Начальный момент s-го} \ & \mbox{порядка} \ & \mbox{$lpha_{ m s}$} = M[X^{ m s}] \end{aligned}$	$\alpha_s[X] = \sum_{i=1}^n x_i^s p_i$	$\alpha_{s}[X] = \int_{-\infty}^{\infty} x^{s} f(x) dx$		
Центральный момент порядка s $\mu_s \big[X \big] = M \bigg[\overset{0}{X^s} \bigg]$	$\mu_s[X] = \sum_{i=1}^n (x_i - m_x)^s p_i$	$\mu_{s}[X] = \int_{-\infty}^{\infty} (x - m_{x})^{s} f(x) dx$		
Дисперсия $D[X] = D_x = \mu_2[X]$	$D[X] = \sum_{i=1}^{n} (x_i - m_x)^2 p_i$	$D[X] = \int_{-\infty}^{\infty} (x - m_x)^2 f(x) dx$		

Примечание:

$$\overset{0}{X} = X - m_{_{\! \! x}}$$
 - центрированная случайная величина,
$$\sigma[X] = \sigma_{_{\! \! x}} = \sqrt{D[X]} = \sqrt{D_{_{\! \! x}}} \; \text{- среднее квадратическое отклонение (СКО)}.$$

2.5. Наиболее применимые в теории надежности законы распределения случайных величин

Наиболее употребительными при решении задач оценивания надежности ТС являются экспоненциальный и нормальный законы распределения. При этом в качестве случайной величины чаще всего фигурирует наработка T системы до отказа, которая соответствует функции распределения F(t). В некоторых ситуациях целесообразно оперировать функцией надежности, характеризующей вероятность противоположного отказу события: $P(t) = P\{T \ge t\} = 1 - F(t). \tag{1.7}$

Функции и плотности распределения для вышеназванных законов распределения СВ представлены в таблице 3.1.

Таблица 3 1

			таолица 5.1
Закон	Выражения,	Параметр	
распределения	Функция распределения	Плотность распределения	
Экспоненци- альный	$F(t) = 1 - e^{-\lambda t}$	$f(t) = \lambda e^{-\lambda t}$	λ - интенсив- ность отказов
Нормальное распределение	$F(t) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{t} e^{\frac{-(x-m)^2}{(2\sigma^2)}} dx$	$f(t) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(t-m)^2}{(2\sigma^2)}}$	σ - CKO, m - MO

Для практических расчетов в случае нормального закона распределения применяют функцию Лапласа.

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-x^{2}/2} dx, \qquad (1.9)$$

где

$$\varphi(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2} . \tag{1.10}$$

При этом производится переход от случайной величины T к величине, имеющей нулевое математическое ожидание и единичную дисперсию:

$$Z = (T - m)/\sigma.$$

Функция $\varphi(z)$ четная, т.е. $\varphi(-z) = \varphi(z)$, и следовательно

$$\Phi(-z) = 1 - \Phi(z). \tag{1.12}$$

Для значений функции $\Phi(z)$ составлены таблицы; она также является

встроенной функцией многих программных пакетов.

3. Задание

С использованием программ *MS Excel for Windows*, «MathCad» или «MatLab» найти решения следующих задач по вариантам.

Задача 1. Имеются 4 ящика, в которых находятся белые и черные шары (см. вариант задания): Из каждого ящика наугад вынимают по шару. Найти вероятность того, что все они будут одного цвета.

Варианты группового задания

No	No	Количество шаров		
варианта	ящика	белых	черных	
	1	2	3	
1	2	3	1	
1	3	3	3	
	4	2	3	
	1	3	2	
2	2	1	3	
2	3	4	2	
	4	2	3	
3	1	2	1	
	2	1	2	
	3	3	5	

	4	2	2
	1	4	3
4	2	3	4
4	3	2	3
	4	1	4
	1	2	2
5	2	3	3
	3	2	4
	4	4	2

Задача 2. Система состоит из 3-х блоков, причем 1-й может отказать с вероятностью 0.01, второй - с вероятностью 0.001, третий - с вероятностью 0.002. Перед вводом в эксплуатацию прибор проходит 2 вида испытаний.

При первом виде испытаний дефект 1-ого блока будет выявлен с вероятностью 0.7; второго - с вероятностью 0.5; третьего с вероятностью 0.4.

При втором виде испытаний дефект 1-го блока будет выявлен с вероятностью 0.9; второго - с вероятностью 0,2; третьего - с вероятностью 0.6.

Прибор считается исправным, если исправны все три блока.

Найти: 1) вероятность того, что неисправный прибор будет выпущен в эксплуатацию; 2) вероятность отказа прибора.

Задача 3. Дискретная случайная величина распределена по закону, заданному рядом приведенным в таблице. Найти: 1) математическое ожидание m_x ;

2) дисперсию D_x .

Варианты группового задания

Закон распределения случайной величины $X(p_i)$

No॒	x_i											
вар.	0,2	0,3	0,4	0,5	0,6	0,7	0,8	1	1,2	1,3	1,4	1,5
1	0,001	0,002	0,007	0,12	0,4	0,22	0,1	0,05	0,04	0,03	0,02	0,01
2	0,002	0,01	0,005	0,14	0,3	0,15	0,2	0,08	0,05	0,02	0,03	0,1
3	0,012	0,2	0,05	0,003	0,5	0,25	0,12	0,06	0,005	0,07	0,025	0,3
4	0,02	0,004	0,3	0,014	0,4	0,32	0,12	0,05	0,35	0,08	0,045	0,4
5	0,005	0,002	0,055	0,16	0,48	0,07	0,23	0,005	0,65	0,07	0,005	0,07

4. Содержание отчета:

- Цель работы;
- Расчетные формулы для решения задач;

- Результаты расчетов.
- 5. Контрольные вопросы:
 - ✓ Перечислите основные законы распределения отказов при расчётах надёжности.
 - ✓ Определите области применимости законов распределения случайных величин, используемых в теории надёжности.
 - ✓ Укажите, в каких случаях необходимо пользоваться усечённым нормальным распределением?
 - ✓ Что такое случайная величина?
 - ✓ Чему равна вероятность произведения двух событий (общий случай)?
 - ✓ Перечислите типы случайных величин?

ЛАБОРАТОРНАЯ РАБОТА №2. ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИ НЕ-ВОССТАНАВЛИВАЕМЫХ СИСТЕМ

- 1. Цель работы: Ознакомление с методикой и приобретение навыков расчета показателей надежности невосстанавливаемых систем (НС).
 - 2. Краткие теоретические сведения
- 2.1. Наиболее применимые в теории надежности законы распределения случайных величин (продолжение)

Кроме тех законов распределения, которые были изучены в процессе выполнения лабораторной работы №1, в решении задач оценивания надежности ТС нашли себе применение усеченный нормальный закон распределения и распределение Вейбулла—Гнеденко. Функции и плотности распределения для вышеназванных законов представлены в таблице 2.1.

Таблица 2.1

	t		· ' ·
Закон	Выражения для функций		Параметры
распределения	Функция распределения	Плотность распреде-	параметры
Нормальное распределение (усеченный закон)	$t = \frac{-(x-m)^2}{x^2}$	$f(t) = \frac{c}{\sigma\sqrt{2\pi}} e^{\frac{-(t-m)^2}{(2\sigma^2)}}$	σ, m
Распределение Вейбула–Гнеденко	$F(t) = 1 - e^{-\alpha t^k}$	$f(t) = \alpha k t^{k-1} e^{-\alpha t^k}$	α, k

Примечание: с - нормирующий коэффициент:

$$c = \sqrt{2\pi} / \int_{-m/\sigma}^{\infty} e^{-z^2/2} dz.$$

2.2. Вероятности отказа и безотказной работы НС

Статистическая оценка \tilde{F} наработки НС до отказа при условии, что на испытания поставлено N идентичных систем, находящихся в одинаковых условиях, а испытания каждой системы доводятся до ее отказа, соответствует формуле

$$\widetilde{F}(t) = N(t)/N, \qquad (2.1)$$

где N(t) - число систем, отказавших к моменту времени t, т.е. на интервале (0, t), причем $\tilde{F}(0) = 0$, а при $t \to \infty$ величина $\tilde{F}(0) \to 1$.

Статистическая оценка $Q(t_1)$ вероятности отказа $Q(t_1)$ при фиксированном значении $t = t_1$:

$$\widetilde{Q}(t_1) = N(t_1)/N . \tag{2.2}$$

Статистическая оценка $P(t_1)$ вероятности безотказной работы $P(t_1)$ HC на интервале $(0, t_1)$:

$$P(t_1) = 1 - \widetilde{Q}(t_1) = [N - N(t_1)]/N$$
 (2.3)

2.3. Интенсивность отказов НС

Интенсивность отказов $\lambda(t)$ невосстанавливаемой системы определяется как условная плотность вероятности ее отказа в момент t при условии, что до этого момента отказы не возникали:

$$\lambda(t) = \lim_{\Delta t \to 0} \left[-\frac{1 - P(t, t + \Delta t)}{\Delta t} \right] = -\frac{dP(t)}{dt} \frac{1}{P(t)}.$$
(2.4)

Статистическая оценка $\tilde{\lambda}(t)$ интенсивности отказов определяется равенством:

$$\widetilde{\lambda}(t) = \widetilde{f}(t) / \widetilde{P}(t) = \frac{N(t - \Delta t/2, t + \Delta t/2)}{\Delta t [N - N(t)]},$$
(2.5)

где - $N(t-\Delta t/2\,,\ t+\Delta t/2)$ число систем, отказавших на интервале $(t-\Delta t/2\,,\ t+\Delta t/2)\,;\ N-N(t)$ - число систем, работоспособных к моменту t.

2.4. Средняя наработка НС до отказа

K числу показателей надежности HC, являющихся числовыми характеристиками случайных величин, относится средняя наработка до отказа (среднее время безотказной работы) - математическое ожидание случайной величины T наработки до отказа (или времени безотказной работы). При этом:

$$\tau = \int_{0}^{\infty} p(t) dt. \tag{2.6}$$

Статистическая оценка au средней наработки au до отказа

$$\widetilde{\tau} = \sum_{i=1}^{N} t_i / N \,, \tag{2.7}$$

где t_i - наработка до отказа i-й системы; N - число систем.

Отметим, что средняя наработка т до отказа равна:

а) для случая экспоненциального закона распределения:

$$\tau = \int_{0}^{\infty} e^{-\lambda t} dt = 1/\lambda, \qquad (2.8)$$

б) для случая нормального распределения:

$$\tau = m \tag{2.9}$$

в) для случая усеченного нормального распределения:

$$\tau = m + \sigma c_1, \tag{2.10}$$

3. Задание

 $c_1 = \frac{c}{\sqrt{2\pi}} e^{-m^2/(2\sigma^2)}$.

Используя программные средства найти решения следующих задач.

Задача 1. На испытания отправлено 50 образцов новой ТС. К моменту t_1 =10000 час. число отказавших систем - $N(t_1)$; к моменту t_2 =11000 час. - $N(t_2)$; к моменту t_3 =12 000 час. - $N(t_3)$.

Найти статистические оценки: 1) вероятности безотказной работы $P(t_i)$, i = 1,2,3;

- 2) вероятности отказа Q(t), i = 1, 2, 3;
- 3) интенсивности отказов $\lambda(t_2)$.

Варианты группового задания

№ варианта	$N(t_1)$	$N(t_2)$	$N(t_3)$
1	3	4	6
2	5	7	12
3	2	5	14
4	6	13	22
5	11	17	34

Задача 2. Найти оценку τ средней наработки системы до отказа, если испытано 10

образцов этой системы (т.е. N = 10), и каждый i-й образец (i = 1, 2, ..., 10) проработал до отказа время t_i , указанное в таблице:

<u>No</u>	t_i , ч									
вар.	1	2	3	4	5	6	7	8	9	10
1	12000	7200	10000	5000	11000	7000	7800	9100	9800	8000
2	5700	7000	8300	4800	11500	2300	8550	7250	8800	4000
3	6300	1200	7000	3800	4600	8000	7230	4600	10000	15000
4	7500	2800	8000	13000	7850	9000	7600	6200	11000	4560
5	5000	3000	4600	6800	9000	8000	1450	2380	6000	10000

Задача 3. Наработка системы до отказа подчиняется экспоненциальному закону $P(t) = e^{-\lambda \cdot t} \ , \ c \ интенсивностью отказов \ \lambda = 2 \cdot 10^{-3} \ 1/чаc.$

Необходимо: 1) найти вероятность $Q(t_1)$ отказа системы к моменту времени $t_1 = 1200$ час; 2) найти среднюю наработку τ системы до отказа; 3) построить график функции Q(t).

Задача 4. Наработка системы до отказа подчиняется нормальному закону, усеченному на интервале $(0;\infty)$ с параметрами распределения m=4000 час, $\lambda=1000$ час.

Необходимо: 1) найти вероятность безотказной работы для момента времени t_1 =1200 час; 2) найти среднюю наработку τ системы до отказа; 3) построить график изменения вероятности безотказной работы в интервале от t_2 до t_3 .

Варианты группового задания

№ варианта	t_1	$t_2 \div t_3$
1	1200	100-500
2	700	550-750
3	1000	220-410
4	1300	345-675
5	900	800-915

Задача 5. Наработка системы до отказа подчиняется распределению Вейбулла. При этом имеет место «участок приработки» на характеристике для интенсивности отказов. При заданных параметрах распределения α; k.

Найти вероятность P(t) безотказной работы и интенсивность $\lambda(t)$ отказов системы при: $t=t_1$; и $t=t_2$.

Варианты группового задания

№ варианта	α	k	t_1	t_2
1	10^{-3}	0,5	100	500
2	10^{-3}	0,55	150	450
3	10^{-3}	0,6	200	520
4	10^{-3}	0,78	180	550
5	10 ⁻³	0,62	160	400

- 4. Содержание отчета:
- Цель работы;
- Расчетные формулы для решения задач;
- Результаты расчетов, необходимые графики.
- 5. Контрольные вопросы:
 - ✓ Что называется интенсивностью отказов невосстанавливаемой системы?
 - ✓ Что называется средней наработкой до отказа?
 - ✓ Чему равна средняя наработка до отказа для случая экспоненциального закона распределения?
 - ✓ Чему равна средняя наработка до отказа для случая нормального распределения?
 - ✓ Чему равна средняя наработка до отказа для случая усеченного нормального распределения?

ЛАБОРАТОРНАЯ РАБОТА №3. ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИ ВОССТАНАВЛИВАЕМЫХ СИСТЕМ

- 1. Цель работы: Ознакомление с методикой и приобретение навыков расчета показателей надежности восстанавливаемых систем (ВС).
 - 2. Краткие теоретические сведения
 - 2.1. Потоки отказов восстанавливаемых систем

После каждого отказа ВС следует ее восстановление, которое заключается в замене отказавшего элемента идентичным работоспособным или в проведении ремонтных операций. Так же, как и наработка до первого отказа невосстанавливаемой системы, моменты наступления отказов ВС являются случайными. Нередко случайной является и продолжительность работ по проведению восстановления.

Последовательность отказов, происходящих один за другим в случайные моменты времени, носит название потока отказов. Понятие потока отказов является одним из основных при рассмотрении систем с восстановлением.

Возможны два основных способа задания потока отказов. Первый способ заключается в рассмотрении некоторого дискретного случайного процесса $\eta(t)$ - числа отказов на промежутке времени (0, t). Второй способ заключается в изучении последовательности непрерывных случайных наработок $\xi_1 = t_1$; $\xi_2 = t_2 - t_1$; $\xi_3 = t_3 - t_2$; ... между отказами.

Введем некоторые дополнительные понятия. Ведущая функция потока определяется как математическое ожидание числа отказов за время t

$$W(t) = M[\eta(t)]. \tag{3.1}$$

Очевидно, что W(t) - неотрицательная неубывающая функция. Эта функция к тому же практически всегда дифференцируема, и существует величина которую называют параметром потока отказов.

$$\omega(t) = dW(t)/dt, \tag{3.2}$$

2.2. Показатели надежности восстанавливаемых систем

Показатели безотказности. В соответствии с двумя способами задания потока отказов для восстанавливаемых систем можно применять различные показатели безотказности. При задании потока отказов как дискретного случайного процесса n(t) - числа отказов на интервале (0;t) показателем безотказности является параметр потока отказов $\omega(t)$, определяемый соотношением (3.2). Для статистического определения параметра потока отказов используются данные испытаний одинаковых ВС в одинаковых условиях эксплуатации и при одинаковом техническом обслуживании. В момент t=0 все системы работоспособны и начинают работу. Обозначим $n_i(t)$ число отказов i-й системы $(i=\overline{1,N})$ на интервале (0;t). Тогда

$$\widetilde{\omega}(t) = \sum_{i=1}^{N} \left[n_i (t + \Delta t) - n_i(t) \right] / (N \cdot \Delta t).$$
(3.3)

Таким образом, параметр потока отказов характеризуется отношением числа отказов системы на некотором малом отрезке времени к значению этого отрезка.

При задании потока отказов как последовательности случайных величин ξ_1, ξ_2 ... наработок между отказами (в предположении, что эти наработки имеют одинаковое распределение с плотностью f(t)) показателем безотказности является средняя наработка на отказ

$$\theta = M[\xi_i] = \int_0^\infty t f(t) dt, \qquad (i = 1, 2, ...).$$
 (3.4)

Отметим, что в простейшем потоке средняя наработка на отказ θ и параметр потока ω связаны соотношением $\theta=1/\omega$.

Для статистического определения средней наработки на отказ θ будем, как и выше, испытывать N одинаковых восстанавливаемых систем. Предположим, что каждая из них проработала в течение времени t. Тогда

$$\widetilde{\theta} = N t / \sum_{i=1}^{N} n_i(t) . \tag{3.5}$$

Показатели ремонтопригодности. На практике продолжительность восстановления почти всегда существенно меньше времени между отказами. Однако нельзя не учитывать продолжительность восстановления для решения многих задач надежности (например, расчета потерь из-за отказов, количества необходимого ремонтного персонала и др.).

Обозначим через T_B случайную величину - продолжительность восстановления работоспособного состояния системы после отказа (далее сокращенно - время восстановления).

Показателями ремонтопригодности являются вероятность G(t) восстановления работоспособного состояния за заданное время t_1 и среднее t_B время восстановления соответственно:

$$G(t_1) = P\{T_B < t_1\}; \ \tau_B = M[T_B].$$
 (3.6)

Статистические определения этих показателей:

$$\widetilde{G}(t_1) = l(t_1)/m; \ \widetilde{\tau}_B = \sum_{i=1}^m \tau_{Bi}/m;$$
(3.7)

где $l(t_1)$ - число восстановлений, длительность которых меньше t_1 ; m - общее число восстановлений; $\tau_{\rm Bi}$ - время восстановления после i-го отказа.

Комплексные показатели надежности. Комплексные показатели отражают совместно безотказность и ремонтопригодность.

Коэффициентом готовности K_{Γ} называют вероятность того, что система окажется работоспособной в произвольно выбранный момент времени в установившемся процессе эксплуатации. Можно показать, что в альтернирующем процессе восстановления коэффициент готовности

$$K_{\Gamma} = \theta / (\theta + \tau_{B}). \tag{3.8}$$

Для статистического определения коэффициента готовности, как и в начале настоящего раздела, рассмотрим испытания N одинаковых восстанавливаемых систем и обозначим $N_P(t_x)$ число систем, находящихся в состоянии работоспособности в произвольный, достаточно удаленный от начала испытаний момент времени t, Тогда статистическое определение коэффициента готовности

$$\widetilde{K}_{\Gamma} = N_{p}(t)/N. \tag{3.9}$$

Коэффициентом оперативной готовности $K_{O\Gamma}(t)$ называют вероятность того, что система окажется работоспособной в произвольно выбранный момент времени в установившемся режиме эксплуатации и что, начиная с этого момента, система будет работать безотказно в течение заданного интервала времени t. Из этого определения и из (3.9) следует, что в альтернирующем процессе восстановления

$$K_{OF}(t) = \frac{\theta}{\theta + \tau_B} P(t_x, t), \tag{3.10}$$

где $P(t_x, t)$ - условная вероятность безотказной работы BC на интервале $(t_x; t_x + t)$ при условии, что в момент t_x система была работоспособна.

При экспоненциальным законе для условной вероятности имеем:

$$K_{OF}(t) = \frac{\theta}{\theta + \tau_B} e^{-\lambda t}.$$
(3.11)

3. Задание

С использованием программы MS Excel for Windows, программного пакета «MathCad» или «MatLab» найти решения следующих задач.

Задача 1. Пусть для числа отказов $n_i(t)$ каждой из пяти систем, поставленных на испытания, имеют место следующие закономерности:

номер	число	время t, час					
системы	отказов	50	100	150	200	250	300
1	$n_1(t)$	1	2	2	3	4	4
2	$n_2(t)$	2	3	3	3	4	5
3	$n_3(t)$	1	1	1	3	4	4
4	$n_4(t)$	2	3	4	4	5	5
5	$n_5(t)$	1	1	2	2	3	3

Системы полностью восстанавливаются после каждого отказа. Найти ω (t_1) и ω (t_2) Варианты группового задания

№ варианта	$\omega(t_1)$	$\omega(t_2)$
1	150	250
2	50	150
3	100	300
4	50	250
5	200	250

Задача 2. Четыре системы проработали 1000 часов. При этом: 1) в первой системе было $n_I(t)$ отказа; 2) во второй — $n_2(t)$ отказов; 3) в третьей — $n_3(t)$ отказов; 4) в четвертой $n_4(t)$ отказа.

После каждого отказа системы полностью восстанавливались. Найти оценку $\overset{\sim}{\theta}$ средней наработки на отказ.

Варианты группового задания

№ варианта	$n_l(t)$	$n_2(t)$	$n_3(t)$	$n_4(t)$
1	3	0	5	2
2	0	4	3	1
3	2	2	5	4
4	1	4	0	5
5	2	2	2	4

Задача 3. В системе имели место 7 отказов. Время восстановления $t_{\rm B}i$, =1, 2,...,7, после очередного отказа составило:

Варианты группового задания

		·· F	I J					
№	время восстановления $t_{\rm Bi}$, час.							
вар.	1	2	3	4	5	6	7	
1	1,5	6	2	2,5	3	3	2,5	
2	2	5	4	5	5	1.5	1.5	

3	6	6	2	2,5	4	1	2
4	1	2	3	5	6	2	1
5	4	5	5	3	3	4	5

Найти оценки:

- 1) вероятности того, что время восстановления не будет превышать $t_1 = 2$ час;
- 2) среднего времени т_в восстановления.

Задача 4. Имеются 3 экземпляра системы, которые проработали 500 часов. График работы систем:

Номер	Данные об отказах и	Номер отказа						
системы	ремонтах систем	1	2	3	4	5		
1	Момент отказа, час.	100	155	300	390	-		
1	Время ремонта, час.	5	2	10	5	-		
2	Момент отказа, час.	50	100	155	300	350		
2	Время ремонта, час.	10	5	5	5	10		
2	Момент отказа, час.	150	300	455	-	-		
3	Время ремонта, час.	10	5	5	-	-		

Знак "-" обозначает отсутствие отмеченного отказа. Найти коэффициент готовности K_{Γ} .

Задача 5. Построить график изменения коэффициента оперативной готовности системы $K_{O\Gamma}(t)$ на интервале времени Δt =200 час, если: закон надежности - экспоненциальный, λ = 10^{-4} час⁻¹; средняя наработка на отказ θ = 300 час; среднее время восстановления $\tau_{\rm B}$ = 10,5 час. Построение графика производить, используя программные средства, интервал изменения t от 0 до 200 часов.

- 4. Содержание отчета:
- Цель работы;
- Расчетные формулы для решения задач;
- Результаты расчетов;
- Значения функции коэффициента готовности в отдельных точках и ее график.
- 5. контрольные вопросы:
 - ✓ Что называется потоком отказов?
 - ✓ Назовите два основных способа задания потоков отказов.
 - ✓ Назовите комплексные показатели безотказности и ремонтопригодности, приведите их статистические оценки.
 - ✓ Что называют коэффициентом готовности?
 - ✓ Что называют коэффициентом оперативной готовности?

ЛАБОРАТОРНАЯ РАБОТА №4. МЕТОДЫ РАСЧЕТА НАДЕЖНОСТИ НЕВОССТА-НАВЛИВАЕМЫХ СИСТЕМ

- 1. Цель работы: Ознакомление с методикой и приобретение навыков расчета показателей надежности невосстанавливаемых систем (включая системы с резервированием).
- 2. Краткие теоретические сведения. Методы расчета надежности невосстанавливаемых систем

Выбор метода расчета надежности невосстанавливаемых систем зависит от структуры системы. Обычно различают две группы указанных систем: с простой структурой, сводящейся к последовательно-параллельному соединению элементов (в смысле надежности); со сложной структурой, не сводящейся к последовательно-параллельному соединению элементов (в смысле надежности).

2.1. Расчет надежности систем с простой структурой

Вероятность безотказной работы системы при основном (последовательном) соединении n элементов определяется выражением

$$P_c(t) = p_1(t)p_2(t)...p_n(t) = \prod_{i=1}^n p_i(t),$$
(4.1)

где $p_i(t)$ - вероятность безотказной работы i-го элемента.

дующий вид:

При параллельном соединении т элементов вероятность отказа системы будет равна

$$Q_{c}(t) = q_{1}(t) q_{2}(t) \dots q_{m}(t) = \prod_{j=1}^{m} q_{j}(t),$$
(4.2)

где $q_j(t) = 1 - p_j(t)$ - вероятность безотказной работы j-го элемента.

Если закон распределения времени безотказной работы элементов экспоненциальный, $p_i(t) = e^{-\lambda_i t} \ ,$ то при основном соединении элементов выражение (4.1) примет сле-

$$P_c(t) = e^{-\lambda_1 t} e^{-\lambda_2 t} \dots e^{-\lambda_n t} = e^{-\lambda_C t},$$
 (4.3)

 $\lambda_c = \lambda_1 + \lambda_2 + \ldots \lambda_n = \sum_{i=1}^n \lambda_i$ - интенсивность отказов системы.

При параллельном соединении *m* элементов, имеющих экспоненциальный закон распределения времени безотказной работы, вероятность отказа всей группы элементов:

$$Q_{P}(t) = (1 - e^{-\lambda_{1}t})(1 - e^{-\lambda_{2}t}) \dots (1 - e^{-\lambda_{m}t}) = \prod_{j=1}^{m} (1 - e^{-\lambda_{j}t}).$$
(4.4)

Влияние условий эксплуатации на величины показателей надежности учитывают при окончательном (коэффициентном) расчете. Такой учет обычно производится с помощью соотношения

$$\lambda = \lambda_{\text{\tiny HOM}} k_1 k_2 \dots k_n \,, \tag{4.5}$$

где $\lambda_{\text{ном}}$ - номинальное значение интенсивности отказов, соответствующее нормальным условиям эксплуатации; k_1 , k_2 , ..., k_n - поправочные коэффициенты (коэффициенты нагрузки), учитывающие отклонения влияющих величин от нормальных значений; λ - результирующая величина интенсивности отказов.

2.2. Расчет надежности систем со сложной структурой.

Метод перебора состояний. Вероятность того, что система будет находиться в одном из возможных работоспособных состояний, определяется выражением

$$P = \sum_{j=1}^{m} \prod_{l_j} p_l \prod_{k_j} q_k ,$$
 (4.6)

где m-общее число работоспособных состояний, в каждом j-м из которых число исправных элементов равно l_j , а вышедших из строя - k_j ; p_l и q_k - вероятность безотказной работы и вероятность отказа элемента с соответствующим номером.

Метод разложения относительно особого элемента. Этот метод основан на использовании формулы полной вероятности. В сложной системе выделяется особый элемент, все возможные состояния H_i , i = 1, 2,, n, которого образуют полную группу:

$$\sum_{i=1}^{n} P\{H_i\} = 1$$

Если А - анализируемое состояние системы, то его вероятность

$$P\{A\} = \sum_{i=1}^{n} P\{H_i\} P\{A/H_i\}. \tag{4.7}$$

Сомножитель $P\{A/H_i\}$ в каждом из слагаемых правой части (4.7) определяет вероятность состояния A при условии, что особый элемент находится в состоянии H_i . Рассмотрение состояния H_i особого элемента как фиксированного позволяет упростить структурную схему системы, применяемую при расчете надежности, и свести ее к последовательно-параллельному соединению элементов.

2.3. Структурная избыточность

Для повышения надежности технических систем и их компонентов применяют структурную избыточность. С целью сопоставления общего числа однотипных элементов n и числа г работающих элементов, необходимых для функционирования системы, вводится понятие кратности резервирования:

$$k = (n - r)/r. (4.8)$$

Показателями, определяющими эффективность резервирования, являются величины

$$B_{\tau} = \tau_p / \tau; \quad B_p = P_p / P; \quad B_Q = Q / Q_p, \tag{4.9}$$

где B_{τ} - выигрыш за счет повышения средней наработки до отказа резервированной системы τ по сравнению с наработкой нерезервированной системы τ ; B_p , B_Q - аналогичные показатели, характеризующие повышение вероятности безотказной работы и снижение вероятности отказа.

2.4. Общее постоянное резервирование с целой кратностью

Вероятность отказа совокупности m параллельно работающих элементов при r=1 определяется выражением (4.2), откуда для равнонадежных элементов

$$Q_p = q^m = q^{k+1}; \quad B_Q = q/q^m = 1/q^k,$$
 (4.10)

где q - вероятность отказа одного элемента.

Для группы резервированных элементов при кратности резервирования k и экспоненциальном законе распределения времени их безотказной работы средняя наработка до отказа определяется выражением:

$$\tau_p = \frac{1}{\lambda} \left(1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k+1} \right) = \tau \sum_{i=1}^{k+1} \frac{1}{i},$$
(4.11)

где λ – интенсивность отказов одного элемента; $\tau = 1/\lambda$.

2.5. Резервирование двухполюсных элементов

Наиболее характерными типами отказов для двухполюсных элементов релейного типа являются «обрыв» и «короткое замыкание». Учитывая возможные влияния отказов на функционирование системы, можно построить структурные схемы расчета надежности для указанных случаев отказа, которые представлены в таблице 4.1. Построение подобных схем для систем с релейными элементами позволяет рассчитывать их надежность.

Таблица 4.1

Тип отказа	Соединения элементов					
	последовательное	параллельное				
обрыв	<u>a</u> 1 2 b					
короткое замыкание		<u>a</u> 1 2 <u>b</u>				

3. Задание на выполнение работы

Используя один из программных пакетов (*Excel*, *Mathcad*) по указанию преподавателя, последовательно решить следующие задачи.

Задача 1. Система состоит из 15 элементов, имеющих экспоненциальый закон надежности. Отказ системы происходит при отказе любого из ее элементов. В таблице 4.2 приведены интенсивности отказов λ_i , час⁻¹, i = 1, 2, ..., 15, элементов и их коэффициенты нагрузки $K_{Hi} = 1, 2, ..., 15$.

Таблица 4.2

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
λ_i ,(×10 ⁻⁶)	1	20	30	4	5	70	100	20	1000	70	200	80	90	100	300
K_{Ii}	3	2	1	7	1,2	4	2	1	3	3	1	2,5	2	1,2	3

Найти: а) среднюю наработку системы до отказа т;

- б) вероятность безотказной работы за время $t_1 = 500$ час;
- в) вероятность безотказной работы за время $t_2 = 1000$ час.

Задача 2. Система состоит из 3-х идентичных элементов, соединенных параллельно в смысле надежности. Для каждого элемента справедлив экспоненциальный закон надежности с интенсивностью λ .

Найти вероятность безотказной работы системы за время t.

Варианты группового задания

№ варианта	λ, час ⁻¹	t, час
1	$2 \cdot 10^{-5}$	200
2	$1 \cdot 10^{-5}$	150
3	$1 \cdot 10^{-4}$	300
4	$2 \cdot 10^{-5}$	200
5	$5 \cdot 10^{-4}$	100

Задача 3. В системе применено общее постоянное резервирование с целой кратностью k=4. Для исходной (нерезервированной) системы выполнялся экспоненциальный закон надежности с интенсивностью отказов $\lambda=2,3\cdot 10^{-4}$ час⁻¹.

Найти: 1) выигрыш по вероятности отказа (B_O) за время t_1 ;

2) среднюю наработку τ_p до отказа резервированной системы.

Варианты группового задания

№ варианта	t ₁ , час			
1	200			
2	150			
3	300			
4	200			
5	100			

Задача 4. Дана схема, представляющая собой соединение реле (рисунок 4.1).

Вероятность безотказной работы каждого реле: 1) по отношению к отказу типа «об-

рыв» $P_1(t) = e^{-10^{-4}t}$; 2) по отношению к отказу типа «короткое замыкание» $P_2(t) = e^{-10^{-5}t}$

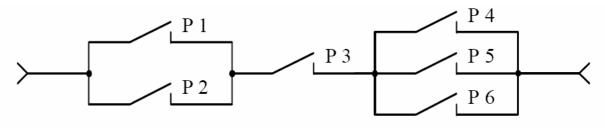


Рисунок 4.1

Определить вероятность отказа всей схемы применительно к «обрыву» $(Q_{c_1}(t_1))$ и «короткому замыканию» $(Q_{c_2}(t_1))$ при $t_1 = 500$ час.

Задача 5. Схема соединения элементов (в смысле надежности) имеет вид:

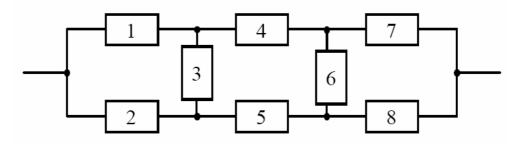


Рисунок 4.2

Все элементы - одинаковые, их вероятность безотказной работы подчиняется закону $P_i(t) = \mathrm{e}^{-\lambda\,t}\,, \, \lambda = 10^{-3} \,\mathrm{vac.}^{-1}; \, i = 1, 2, ..., 8.$

Рассчитать вероятность безотказной работы всего устройства, используя метод разложения относительно особого элемента. Время функционирования системы t = 100 час.

- 4. Содержание отчета:
- Цель работы;
- Структурные схемы расчета надежности;
- Расчетные формулы решения задач;
- Результаты расчетов.

5. Контрольные вопросы:

- ✓ Чему равна вероятность нахождения системы в одном из работоспособных состояний (метод перебора состояний)?
- ✓ В чем суть метода разложения относительно особого элемента?

- ✓ Что такое кратность резервирования?
- ✓ Назовите показатель, определяющий эффективность резервирования.

ЛАБОРАТОРНАЯ РАБОТА №5. ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИ РЕ-ЗЕРВИРОВАННЫХ СИСТЕМ С ДРОБНОЙ КРАТНОСТЬЮ, ОБЩИМ И ПОЭЛЕМЕНТ-НЫМ РЕЗЕРВИРОВАНИЕМ

1. Цель работы: Ознакомление с методикой и приобретение навыков расчета показателей надежности резервированных систем с дробной кратностью, общим и поэлементным резервированием.

2. Краткие теоретические сведения

Резервирование с дробной кратностью. При резервировании с дробной кратностью система может функционировать, если из n однотипных работающих элементов, соединенных параллельно в смысле надежности, в работоспособном состоянии находятся r. Система отказывает, если число отказавших элементов z составляет $z \ge m = n - r + 1$. Вероятность отказа такой системы равна:

$$Q = \sum_{z=m}^{n} C_n^z q^z (1 - q)^{n-z} , \qquad (5.1)$$

где $C_n^z = n!/[z!(n-z)!]$ - число сочетаний из п элементов по z, a, q - вероятность отказа одного элемента.

Резервирование с голосованием по большинству.

Этот вид резервирования (рисунок 5.1), называемый также мажоритарным, является разновидностью резервирования с дробной кратностью. Наличие в системе «элемента голосования» (Э.Г.) позволяет обеспечить сопоставление информации о каждом из n каналов таким образом, что выход системы формируется путем выбора «по большинству».

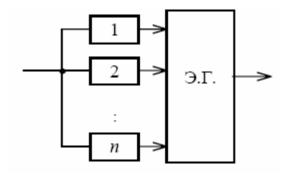


Рисунок 5.1

Вероятность отказа трехканальной мажоритарной схемы (без учета надежности $\mathfrak{I}.\Gamma$.) равна:

$$Q_{M.C.} = C_3^2 q^2 (1 - q) + C_3^3 q^3 = 3q^2 - 2q^3,$$
(5.2)

где q - вероятность отказа одного из сопоставляемых каналов.

Вероятность отказа с учетом возможности отказа Э.Г. равна:

$$Q = 1 - P_{M.C.} \cdot P_{\Im,\Gamma}, \tag{5.3}$$

где $P_{\text{м.с.}}$, $P_{\text{э.г.}}$ - вероятности безотказной работы собственно мажоритарной схемы и элемента голосования.

Общее и поэлементное резервирование. В случае общего резервирования кратности k системы из n элементов (рисунок 5.2) вероятность отказа системы определяется выражением

$$Q_{o.p.} = \left[1 - \left(1 - q\right)^n\right]^{k+1},\tag{5.4}$$

где q - вероятность отказа одного элемента.

Для системы, состоящей из n участков с поэлементным резервированием (рисунок 5.3) целой кратности k_i , i = 1, 2,n, вероятность безотказной работы равна:

$$P = \prod_{i=1}^{n} P_i = \prod_{i=1}^{n} \left(1 - \prod_{j=0}^{k_i} q_{ij} \right), \tag{5.5}$$

где q_{ij} - вероятность отказа j-го элемента, входящего в i-й участок резервирования; P - вероятность безотказной работы i-го участка.

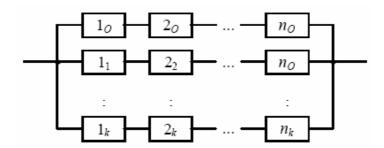


Рисунок 5.2

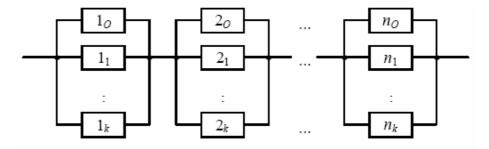


Рисунок 5.3

Такое соединение эффективнее общего резервирования системы.

Резервирование замещением. Если резерв вводится в состав системы после отказа основного элемента и сопровождается переключающими операциями, то имеет место резерви-

рование замещением - активное резервирование.

При этом способе резервирования (рисунок 5.4) резервные элементы могут находиться в нагруженном, облегченном и ненагруженном состоянии.

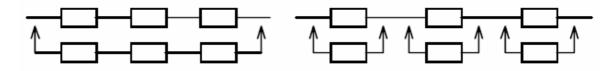


Рисунок 5.4

В случае применения общего резервирования замещением с кратностью k для случая экспоненциального закона надежности с интенсивностью λ вероятность безотказной работы системы определяется выражением:

$$P_{p}(t) = \sum_{i=0}^{k} \frac{(\lambda t)^{i}}{i!} e^{-\lambda t}.$$
(5.6)

3. Задание на выполнение работы

Используя один из программных пакетов (*Excel, Mathcad*), последовательно решить следующие задачи.

Задача 1. Дана система, в которой использовано резервирование с дробной кратностью. Количество элементов, необходимых для работы системы, r; общее число элементов (включая резервные) n. Вероятность безотказной работы элемента за заданное время p. Найти вероятность безотказной работы системы.

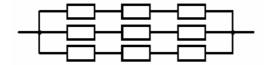
Варианты группового задания

	1	1 2	
№ варианта	r	n	p
1	4	7	0,92
2	5	7	0,95
3	3	6	0,95
4	2	5	0,9
5	4	10	0.96

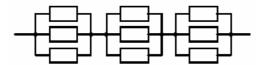
Задача 2. В системе применено мажоритарное резервирование (резервирование с голосованием по большинству) по принципу «2 из 3-х». Вероятность безотказной работы одного канала p = 0.95, вероятность безотказной работы элемента голосования $P_{\Im\Gamma} = 0.98$. Найти вероятность отказа Q_c всей системы.

Задача 3. Даны 2 варианта резервирования системы:

1) общее



2) поэлементное



Вероятность безотказной работы одного элемента подчиняется экспоненциальному закону: $P(t) = e^{-\lambda t}$, где $\lambda = 2 \cdot 10^{-3}$ час. Найти вероятность безотказной работы для двух вариантов построения резервированной системы при t = 300 час.

Задача 4. В системе применено общее резервирование замещением, для чего использованы 4 резервных системы, полностью идентичные основной. Каждая из систем подчиняется экспоненциальному закону надежности с интенсивностью $\lambda = 2 \cdot 10^{-3}$ час. Найти вероятность безотказной работы резервированной системы $P_P(t)$ за время t = 200 час.

Задача 5. В системе - два блока, причем один из них резервируется путем замещения, у второго - применяется постоянное резервирование (троирование). Для обоих блоков имеет место экспоненциальный закон надежности, причем интенсивности отказов $\lambda_1 = 2 \cdot 10^{-4}$ час. $\lambda_2 = 3 \cdot 10^{-4}$ час. $\lambda_3 = 3 \cdot 10^{-4}$ час. $\lambda_4 = 3 \cdot 10^{-4}$ час. $\lambda_5 = 3 \cdot 10^{-4}$ час.

- 4. Содержание отчета:
- Цель работы;
- Структурные схемы расчета надежности;
- Расчетные формулы решения задач;
- Результаты расчетов;
- Выводы.

5. контрольные вопросы:

- ✓ Назовите основные способы обеспечения заданного уровня надёжности систем и объектов.
- ✓ Назовите основные виды резервирования систем и объектов.
- ✓ Назовите основные виды структурного резервирования невосстанавливаемых объектов.
- ✓ В чём различие между активным и пассивным резервированием?
- ✓ В чём особенность резервирования восстанавливаемых систем?
- ✓ В чём особенность резервирования элементов с различным характером отказов?

Литература:

- 1. Курицкий Б.Я. Поиск оптимальных решений средствами Excel 2003 СПб.: ВНV-Санкт-Петербург, 2007. 384 с.
- 2. Вентцель Е.С, Овчаров Л.А. Теория вероятностей и ее инженерные приложения. М.: Наука, 2008. 480 с.
- 3. Очков В.Ф. Mathcad 14 Pro для студентов и инженеров. М.: КомпьютерПресс, 2008. 384 с.
- 4. Ястребенецкий М. А., Иванова Г. М. Надежность автоматизированных систем управления технологическими процессами: Учеб. пособие для вузов М: Энергоатомиздат, 1989.- 264 с.
- 5. Рыжкин А.А., Слюсарь Б.Н., Шучев К.Г. Основы теории надежности: / Учебное пособие. Ростов н/Д: Издательский центр ДГТУ, 2002. 182 с. ISBN:5-7890-0209-9.